langchain/libs/partners/mongodb/tests/utils.py
Casey Clements 6e9a8b188f
mongodb: Add Hybrid and Full-Text Search Retrievers, release 0.2.0 (#25057)
## Description

This pull-request extends the existing vector search strategies of
MongoDBAtlasVectorSearch to include Hybrid (Reciprocal Rank Fusion) and
Full-text via new Retrievers.

There is a small breaking change in the form of the `prefilter` kwarg to
search. For this, and because we have now added a great deal of
features, including programmatic Index creation/deletion since 0.1.0, we
plan to bump the version to 0.2.0.

### Checklist
* Unit tests have been extended
* formatting has been applied
* One mypy error remains which will either go away in CI or be
simplified.

---------

Signed-off-by: Casey Clements <casey.clements@mongodb.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-07 20:10:29 +00:00

275 lines
9.1 KiB
Python

from __future__ import annotations
from copy import deepcopy
from time import monotonic, sleep
from typing import Any, Dict, Generator, Iterable, List, Mapping, Optional, Union, cast
from bson import ObjectId
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.embeddings import Embeddings
from langchain_core.language_models.chat_models import SimpleChatModel
from langchain_core.language_models.llms import LLM
from langchain_core.messages import (
AIMessage,
BaseMessage,
)
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_core.pydantic_v1 import validator
from pymongo.collection import Collection
from pymongo.results import DeleteResult, InsertManyResult
from langchain_mongodb import MongoDBAtlasVectorSearch
from langchain_mongodb.cache import MongoDBAtlasSemanticCache
TIMEOUT = 120
INTERVAL = 0.5
class PatchedMongoDBAtlasVectorSearch(MongoDBAtlasVectorSearch):
def bulk_embed_and_insert_texts(
self,
texts: Union[List[str], Iterable[str]],
metadatas: Union[List[dict], Generator[dict, Any, Any]],
ids: Optional[List[str]] = None,
) -> List:
"""Patched insert_texts that waits for data to be indexed before returning"""
ids_inserted = super().bulk_embed_and_insert_texts(texts, metadatas, ids)
start = monotonic()
while len(ids_inserted) != len(self.similarity_search("sandwich")) and (
monotonic() - start <= TIMEOUT
):
sleep(INTERVAL)
return ids_inserted
def create_vector_search_index(
self,
dimensions: int,
filters: Optional[List[str]] = None,
update: bool = False,
) -> None:
result = super().create_vector_search_index(
dimensions=dimensions, filters=filters, update=update
)
start = monotonic()
while monotonic() - start <= TIMEOUT:
if indexes := list(
self._collection.list_search_indexes(name=self._index_name)
):
if indexes[0].get("status") == "READY":
return result
sleep(INTERVAL)
class ConsistentFakeEmbeddings(Embeddings):
"""Fake embeddings functionality for testing."""
def __init__(self, dimensionality: int = 10) -> None:
self.known_texts: List[str] = []
self.dimensionality = dimensionality
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return consistent embeddings for each text seen so far."""
out_vectors = []
for text in texts:
if text not in self.known_texts:
self.known_texts.append(text)
vector = [float(1.0)] * (self.dimensionality - 1) + [
float(self.known_texts.index(text))
]
out_vectors.append(vector)
return out_vectors
def embed_query(self, text: str) -> List[float]:
"""Return consistent embeddings for the text, if seen before, or a constant
one if the text is unknown."""
return self.embed_documents([text])[0]
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
return self.embed_documents(texts)
async def aembed_query(self, text: str) -> List[float]:
return self.embed_query(text)
class FakeChatModel(SimpleChatModel):
"""Fake Chat Model wrapper for testing purposes."""
def _call(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
return "fake response"
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
output_str = "fake response"
message = AIMessage(content=output_str)
generation = ChatGeneration(message=message)
return ChatResult(generations=[generation])
@property
def _llm_type(self) -> str:
return "fake-chat-model"
@property
def _identifying_params(self) -> Dict[str, Any]:
return {"key": "fake"}
class FakeLLM(LLM):
"""Fake LLM wrapper for testing purposes."""
queries: Optional[Mapping] = None
sequential_responses: Optional[bool] = False
response_index: int = 0
@validator("queries", always=True)
def check_queries_required(
cls, queries: Optional[Mapping], values: Mapping[str, Any]
) -> Optional[Mapping]:
if values.get("sequential_response") and not queries:
raise ValueError(
"queries is required when sequential_response is set to True"
)
return queries
def get_num_tokens(self, text: str) -> int:
"""Return number of tokens."""
return len(text.split())
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
if self.sequential_responses:
return self._get_next_response_in_sequence
if self.queries is not None:
return self.queries[prompt]
if stop is None:
return "foo"
else:
return "bar"
@property
def _identifying_params(self) -> Dict[str, Any]:
return {}
@property
def _get_next_response_in_sequence(self) -> str:
queries = cast(Mapping, self.queries)
response = queries[list(queries.keys())[self.response_index]]
self.response_index = self.response_index + 1
return response
class MockCollection(Collection):
"""Mocked Mongo Collection"""
_aggregate_result: List[Any]
_insert_result: Optional[InsertManyResult]
_data: List[Any]
_simulate_cache_aggregation_query: bool
def __init__(self) -> None:
self._data = []
self._aggregate_result = []
self._insert_result = None
self._simulate_cache_aggregation_query = False
def delete_many(self, *args, **kwargs) -> DeleteResult: # type: ignore
old_len = len(self._data)
self._data = []
return DeleteResult({"n": old_len}, acknowledged=True)
def insert_many(self, to_insert: List[Any], *args, **kwargs) -> InsertManyResult: # type: ignore
mongodb_inserts = [
{"_id": ObjectId(), "score": 1, **insert} for insert in to_insert
]
self._data.extend(mongodb_inserts)
return self._insert_result or InsertManyResult(
[k["_id"] for k in mongodb_inserts], acknowledged=True
)
def insert_one(self, to_insert: Any, *args, **kwargs) -> Any: # type: ignore
return self.insert_many([to_insert])
def find_one(self, find_query: Dict[str, Any]) -> Optional[Dict[str, Any]]: # type: ignore
find = self.find(find_query) or [None] # type: ignore
return find[0]
def find(self, find_query: Dict[str, Any]) -> Optional[List[Dict[str, Any]]]: # type: ignore
def _is_match(item: Dict[str, Any]) -> bool:
for key, match_val in find_query.items():
if item.get(key) != match_val:
return False
return True
return [document for document in self._data if _is_match(document)]
def update_one( # type: ignore
self,
find_query: Dict[str, Any],
options: Dict[str, Any],
*args: Any,
upsert=True,
**kwargs: Any,
) -> None: # type: ignore
result = self.find_one(find_query)
set_options = options.get("$set", {})
if result:
result.update(set_options)
elif upsert:
self._data.append({**find_query, **set_options})
def _execute_cache_aggregation_query(self, *args, **kwargs) -> List[Dict[str, Any]]: # type: ignore
"""Helper function only to be used for MongoDBAtlasSemanticCache Testing
Returns:
List[Dict[str, Any]]: Aggregation query result
"""
pipeline: List[Dict[str, Any]] = args[0]
params = pipeline[0]["$vectorSearch"]
embedding = params["queryVector"]
# Assumes MongoDBAtlasSemanticCache.LLM == "llm_string"
llm_string = params["filter"][MongoDBAtlasSemanticCache.LLM]["$eq"]
acc = []
for document in self._data:
if (
document.get("embedding") == embedding
and document.get(MongoDBAtlasSemanticCache.LLM) == llm_string
):
acc.append(document)
return acc
def aggregate(self, *args, **kwargs) -> List[Any]: # type: ignore
if self._simulate_cache_aggregation_query:
return deepcopy(self._execute_cache_aggregation_query(*args, **kwargs))
return deepcopy(self._aggregate_result)
def count_documents(self, *args, **kwargs) -> int: # type: ignore
return len(self._data)
def __repr__(self) -> str:
return "MockCollection"