mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
6e9a8b188f
## Description This pull-request extends the existing vector search strategies of MongoDBAtlasVectorSearch to include Hybrid (Reciprocal Rank Fusion) and Full-text via new Retrievers. There is a small breaking change in the form of the `prefilter` kwarg to search. For this, and because we have now added a great deal of features, including programmatic Index creation/deletion since 0.1.0, we plan to bump the version to 0.2.0. ### Checklist * Unit tests have been extended * formatting has been applied * One mypy error remains which will either go away in CI or be simplified. --------- Signed-off-by: Casey Clements <casey.clements@mongodb.com> Co-authored-by: Erick Friis <erick@langchain.dev>
216 lines
6.7 KiB
Python
216 lines
6.7 KiB
Python
import uuid
|
|
from typing import Any, Dict, List, Union
|
|
|
|
import pytest # type: ignore[import-not-found]
|
|
from langchain_core.caches import BaseCache
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.globals import get_llm_cache, set_llm_cache
|
|
from langchain_core.load.dump import dumps
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
|
from langchain_core.outputs import ChatGeneration, Generation, LLMResult
|
|
from pymongo.collection import Collection
|
|
|
|
from langchain_mongodb.cache import MongoDBAtlasSemanticCache, MongoDBCache
|
|
from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch
|
|
|
|
from ..utils import ConsistentFakeEmbeddings, FakeChatModel, FakeLLM, MockCollection
|
|
|
|
CONN_STRING = "MockString"
|
|
COLLECTION = "default"
|
|
DATABASE = "default"
|
|
|
|
|
|
class PatchedMongoDBCache(MongoDBCache):
|
|
def __init__(
|
|
self,
|
|
connection_string: str,
|
|
collection_name: str = "default",
|
|
database_name: str = "default",
|
|
**kwargs: Dict[str, Any],
|
|
) -> None:
|
|
self.__database_name = database_name
|
|
self.__collection_name = collection_name
|
|
self.client = {self.__database_name: {self.__collection_name: MockCollection()}} # type: ignore
|
|
|
|
@property
|
|
def database(self) -> Any: # type: ignore
|
|
"""Returns the database used to store cache values."""
|
|
return self.client[self.__database_name]
|
|
|
|
@property
|
|
def collection(self) -> Collection:
|
|
"""Returns the collection used to store cache values."""
|
|
return self.database[self.__collection_name]
|
|
|
|
|
|
class PatchedMongoDBAtlasSemanticCache(MongoDBAtlasSemanticCache):
|
|
def __init__(
|
|
self,
|
|
connection_string: str,
|
|
embedding: Embeddings,
|
|
collection_name: str = "default",
|
|
database_name: str = "default",
|
|
wait_until_ready: bool = False,
|
|
**kwargs: Dict[str, Any],
|
|
):
|
|
self.collection = MockCollection()
|
|
self._wait_until_ready = False
|
|
self.score_threshold = None
|
|
MongoDBAtlasVectorSearch.__init__(
|
|
self,
|
|
self.collection,
|
|
embedding=embedding,
|
|
**kwargs, # type: ignore
|
|
)
|
|
|
|
|
|
def random_string() -> str:
|
|
return str(uuid.uuid4())
|
|
|
|
|
|
def llm_cache(cls: Any) -> BaseCache:
|
|
set_llm_cache(
|
|
cls(
|
|
embedding=ConsistentFakeEmbeddings(dimensionality=1536),
|
|
connection_string=CONN_STRING,
|
|
collection_name=COLLECTION,
|
|
database_name=DATABASE,
|
|
wait_until_ready=15.0,
|
|
)
|
|
)
|
|
assert get_llm_cache()
|
|
return get_llm_cache()
|
|
|
|
|
|
def _execute_test(
|
|
prompt: Union[str, List[BaseMessage]],
|
|
llm: Union[str, FakeLLM, FakeChatModel],
|
|
response: List[Generation],
|
|
) -> None:
|
|
# Fabricate an LLM String
|
|
|
|
if not isinstance(llm, str):
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
else:
|
|
llm_string = llm
|
|
|
|
# If the prompt is a str then we should pass just the string
|
|
dumped_prompt: str = prompt if isinstance(prompt, str) else dumps(prompt)
|
|
|
|
# Update the cache
|
|
llm_cache = get_llm_cache()
|
|
llm_cache.update(dumped_prompt, llm_string, response)
|
|
|
|
# Retrieve the cached result through 'generate' call
|
|
output: Union[List[Generation], LLMResult, None]
|
|
expected_output: Union[List[Generation], LLMResult]
|
|
if isinstance(llm_cache, PatchedMongoDBAtlasSemanticCache):
|
|
llm_cache._collection._aggregate_result = [ # type: ignore
|
|
data
|
|
for data in llm_cache._collection._data # type: ignore
|
|
if data.get("text") == dumped_prompt
|
|
and data.get("llm_string") == llm_string
|
|
] # type: ignore
|
|
if isinstance(llm, str):
|
|
output = get_llm_cache().lookup(dumped_prompt, llm) # type: ignore
|
|
expected_output = response
|
|
else:
|
|
output = llm.generate([prompt]) # type: ignore
|
|
expected_output = LLMResult(
|
|
generations=[response],
|
|
llm_output={},
|
|
)
|
|
|
|
assert output == expected_output # type: ignore
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"prompt, llm, response",
|
|
[
|
|
("foo", "bar", [Generation(text="fizz")]),
|
|
("foo", FakeLLM(), [Generation(text="fizz")]),
|
|
(
|
|
[HumanMessage(content="foo")],
|
|
FakeChatModel(),
|
|
[ChatGeneration(message=AIMessage(content="foo"))],
|
|
),
|
|
],
|
|
ids=[
|
|
"plain_cache",
|
|
"cache_with_llm",
|
|
"cache_with_chat",
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"cacher", [PatchedMongoDBCache, PatchedMongoDBAtlasSemanticCache]
|
|
)
|
|
@pytest.mark.parametrize("remove_score", [True, False])
|
|
def test_mongodb_cache(
|
|
remove_score: bool,
|
|
cacher: Union[MongoDBCache, MongoDBAtlasSemanticCache],
|
|
prompt: Union[str, List[BaseMessage]],
|
|
llm: Union[str, FakeLLM, FakeChatModel],
|
|
response: List[Generation],
|
|
) -> None:
|
|
llm_cache(cacher)
|
|
if remove_score:
|
|
get_llm_cache().score_threshold = None # type: ignore
|
|
try:
|
|
_execute_test(prompt, llm, response)
|
|
finally:
|
|
get_llm_cache().clear()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"prompts, generations",
|
|
[
|
|
# Single prompt, single generation
|
|
([random_string()], [[random_string()]]),
|
|
# Single prompt, multiple generations
|
|
([random_string()], [[random_string(), random_string()]]),
|
|
# Single prompt, multiple generations
|
|
([random_string()], [[random_string(), random_string(), random_string()]]),
|
|
# Multiple prompts, multiple generations
|
|
(
|
|
[random_string(), random_string()],
|
|
[[random_string()], [random_string(), random_string()]],
|
|
),
|
|
],
|
|
ids=[
|
|
"single_prompt_single_generation",
|
|
"single_prompt_two_generations",
|
|
"single_prompt_three_generations",
|
|
"multiple_prompts_multiple_generations",
|
|
],
|
|
)
|
|
def test_mongodb_atlas_cache_matrix(
|
|
prompts: List[str],
|
|
generations: List[List[str]],
|
|
) -> None:
|
|
llm_cache(PatchedMongoDBAtlasSemanticCache)
|
|
llm = FakeLLM()
|
|
|
|
# Fabricate an LLM String
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
|
|
llm_generations = [
|
|
[
|
|
Generation(text=generation, generation_info=params)
|
|
for generation in prompt_i_generations
|
|
]
|
|
for prompt_i_generations in generations
|
|
]
|
|
|
|
for prompt_i, llm_generations_i in zip(prompts, llm_generations):
|
|
_execute_test(prompt_i, llm_string, llm_generations_i)
|
|
|
|
get_llm_cache()._collection._simulate_cache_aggregation_query = True # type: ignore
|
|
assert llm.generate(prompts) == LLMResult(
|
|
generations=llm_generations, llm_output={}
|
|
)
|
|
get_llm_cache().clear()
|