langchain/libs/partners/mongodb/tests/unit_tests/test_cache.py
Casey Clements 6e9a8b188f
mongodb: Add Hybrid and Full-Text Search Retrievers, release 0.2.0 (#25057)
## Description

This pull-request extends the existing vector search strategies of
MongoDBAtlasVectorSearch to include Hybrid (Reciprocal Rank Fusion) and
Full-text via new Retrievers.

There is a small breaking change in the form of the `prefilter` kwarg to
search. For this, and because we have now added a great deal of
features, including programmatic Index creation/deletion since 0.1.0, we
plan to bump the version to 0.2.0.

### Checklist
* Unit tests have been extended
* formatting has been applied
* One mypy error remains which will either go away in CI or be
simplified.

---------

Signed-off-by: Casey Clements <casey.clements@mongodb.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-07 20:10:29 +00:00

216 lines
6.7 KiB
Python

import uuid
from typing import Any, Dict, List, Union
import pytest # type: ignore[import-not-found]
from langchain_core.caches import BaseCache
from langchain_core.embeddings import Embeddings
from langchain_core.globals import get_llm_cache, set_llm_cache
from langchain_core.load.dump import dumps
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, Generation, LLMResult
from pymongo.collection import Collection
from langchain_mongodb.cache import MongoDBAtlasSemanticCache, MongoDBCache
from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch
from ..utils import ConsistentFakeEmbeddings, FakeChatModel, FakeLLM, MockCollection
CONN_STRING = "MockString"
COLLECTION = "default"
DATABASE = "default"
class PatchedMongoDBCache(MongoDBCache):
def __init__(
self,
connection_string: str,
collection_name: str = "default",
database_name: str = "default",
**kwargs: Dict[str, Any],
) -> None:
self.__database_name = database_name
self.__collection_name = collection_name
self.client = {self.__database_name: {self.__collection_name: MockCollection()}} # type: ignore
@property
def database(self) -> Any: # type: ignore
"""Returns the database used to store cache values."""
return self.client[self.__database_name]
@property
def collection(self) -> Collection:
"""Returns the collection used to store cache values."""
return self.database[self.__collection_name]
class PatchedMongoDBAtlasSemanticCache(MongoDBAtlasSemanticCache):
def __init__(
self,
connection_string: str,
embedding: Embeddings,
collection_name: str = "default",
database_name: str = "default",
wait_until_ready: bool = False,
**kwargs: Dict[str, Any],
):
self.collection = MockCollection()
self._wait_until_ready = False
self.score_threshold = None
MongoDBAtlasVectorSearch.__init__(
self,
self.collection,
embedding=embedding,
**kwargs, # type: ignore
)
def random_string() -> str:
return str(uuid.uuid4())
def llm_cache(cls: Any) -> BaseCache:
set_llm_cache(
cls(
embedding=ConsistentFakeEmbeddings(dimensionality=1536),
connection_string=CONN_STRING,
collection_name=COLLECTION,
database_name=DATABASE,
wait_until_ready=15.0,
)
)
assert get_llm_cache()
return get_llm_cache()
def _execute_test(
prompt: Union[str, List[BaseMessage]],
llm: Union[str, FakeLLM, FakeChatModel],
response: List[Generation],
) -> None:
# Fabricate an LLM String
if not isinstance(llm, str):
params = llm.dict()
params["stop"] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
else:
llm_string = llm
# If the prompt is a str then we should pass just the string
dumped_prompt: str = prompt if isinstance(prompt, str) else dumps(prompt)
# Update the cache
llm_cache = get_llm_cache()
llm_cache.update(dumped_prompt, llm_string, response)
# Retrieve the cached result through 'generate' call
output: Union[List[Generation], LLMResult, None]
expected_output: Union[List[Generation], LLMResult]
if isinstance(llm_cache, PatchedMongoDBAtlasSemanticCache):
llm_cache._collection._aggregate_result = [ # type: ignore
data
for data in llm_cache._collection._data # type: ignore
if data.get("text") == dumped_prompt
and data.get("llm_string") == llm_string
] # type: ignore
if isinstance(llm, str):
output = get_llm_cache().lookup(dumped_prompt, llm) # type: ignore
expected_output = response
else:
output = llm.generate([prompt]) # type: ignore
expected_output = LLMResult(
generations=[response],
llm_output={},
)
assert output == expected_output # type: ignore
@pytest.mark.parametrize(
"prompt, llm, response",
[
("foo", "bar", [Generation(text="fizz")]),
("foo", FakeLLM(), [Generation(text="fizz")]),
(
[HumanMessage(content="foo")],
FakeChatModel(),
[ChatGeneration(message=AIMessage(content="foo"))],
),
],
ids=[
"plain_cache",
"cache_with_llm",
"cache_with_chat",
],
)
@pytest.mark.parametrize(
"cacher", [PatchedMongoDBCache, PatchedMongoDBAtlasSemanticCache]
)
@pytest.mark.parametrize("remove_score", [True, False])
def test_mongodb_cache(
remove_score: bool,
cacher: Union[MongoDBCache, MongoDBAtlasSemanticCache],
prompt: Union[str, List[BaseMessage]],
llm: Union[str, FakeLLM, FakeChatModel],
response: List[Generation],
) -> None:
llm_cache(cacher)
if remove_score:
get_llm_cache().score_threshold = None # type: ignore
try:
_execute_test(prompt, llm, response)
finally:
get_llm_cache().clear()
@pytest.mark.parametrize(
"prompts, generations",
[
# Single prompt, single generation
([random_string()], [[random_string()]]),
# Single prompt, multiple generations
([random_string()], [[random_string(), random_string()]]),
# Single prompt, multiple generations
([random_string()], [[random_string(), random_string(), random_string()]]),
# Multiple prompts, multiple generations
(
[random_string(), random_string()],
[[random_string()], [random_string(), random_string()]],
),
],
ids=[
"single_prompt_single_generation",
"single_prompt_two_generations",
"single_prompt_three_generations",
"multiple_prompts_multiple_generations",
],
)
def test_mongodb_atlas_cache_matrix(
prompts: List[str],
generations: List[List[str]],
) -> None:
llm_cache(PatchedMongoDBAtlasSemanticCache)
llm = FakeLLM()
# Fabricate an LLM String
params = llm.dict()
params["stop"] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
llm_generations = [
[
Generation(text=generation, generation_info=params)
for generation in prompt_i_generations
]
for prompt_i_generations in generations
]
for prompt_i, llm_generations_i in zip(prompts, llm_generations):
_execute_test(prompt_i, llm_string, llm_generations_i)
get_llm_cache()._collection._simulate_cache_aggregation_query = True # type: ignore
assert llm.generate(prompts) == LLMResult(
generations=llm_generations, llm_output={}
)
get_llm_cache().clear()