mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
50186da0a1
Updating #21137
327 lines
10 KiB
Python
327 lines
10 KiB
Python
"""written under MIT Licence, Michael Feil 2023."""
|
|
|
|
import asyncio
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple
|
|
|
|
import aiohttp
|
|
import numpy as np
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
__all__ = ["InfinityEmbeddings"]
|
|
|
|
|
|
class InfinityEmbeddings(BaseModel, Embeddings):
|
|
"""Self-hosted embedding models for `infinity` package.
|
|
|
|
See https://github.com/michaelfeil/infinity
|
|
This also works for text-embeddings-inference and other
|
|
self-hosted openai-compatible servers.
|
|
|
|
Infinity is a package to interact with Embedding Models on https://github.com/michaelfeil/infinity
|
|
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import InfinityEmbeddings
|
|
InfinityEmbeddings(
|
|
model="BAAI/bge-small",
|
|
infinity_api_url="http://localhost:7997",
|
|
)
|
|
"""
|
|
|
|
model: str
|
|
"Underlying Infinity model id."
|
|
|
|
infinity_api_url: str = "http://localhost:7997"
|
|
"""Endpoint URL to use."""
|
|
|
|
client: Any = None #: :meta private:
|
|
"""Infinity client."""
|
|
|
|
# LLM call kwargs
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator(allow_reuse=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
|
|
values["infinity_api_url"] = get_from_dict_or_env(
|
|
values, "infinity_api_url", "INFINITY_API_URL"
|
|
)
|
|
|
|
values["client"] = TinyAsyncOpenAIInfinityEmbeddingClient(
|
|
host=values["infinity_api_url"],
|
|
)
|
|
return values
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Call out to Infinity's embedding endpoint.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
embeddings = self.client.embed(
|
|
model=self.model,
|
|
texts=texts,
|
|
)
|
|
return embeddings
|
|
|
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Async call out to Infinity's embedding endpoint.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
embeddings = await self.client.aembed(
|
|
model=self.model,
|
|
texts=texts,
|
|
)
|
|
return embeddings
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Call out to Infinity's embedding endpoint.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
return self.embed_documents([text])[0]
|
|
|
|
async def aembed_query(self, text: str) -> List[float]:
|
|
"""Async call out to Infinity's embedding endpoint.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
embeddings = await self.aembed_documents([text])
|
|
return embeddings[0]
|
|
|
|
|
|
class TinyAsyncOpenAIInfinityEmbeddingClient: #: :meta private:
|
|
"""Helper tool to embed Infinity.
|
|
|
|
It is not a part of Langchain's stable API,
|
|
direct use discouraged.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
|
|
mini_client = TinyAsyncInfinityEmbeddingClient(
|
|
)
|
|
embeds = mini_client.embed(
|
|
model="BAAI/bge-small",
|
|
text=["doc1", "doc2"]
|
|
)
|
|
# or
|
|
embeds = await mini_client.aembed(
|
|
model="BAAI/bge-small",
|
|
text=["doc1", "doc2"]
|
|
)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
host: str = "http://localhost:7797/v1",
|
|
aiosession: Optional[aiohttp.ClientSession] = None,
|
|
) -> None:
|
|
self.host = host
|
|
self.aiosession = aiosession
|
|
|
|
if self.host is None or len(self.host) < 3:
|
|
raise ValueError(" param `host` must be set to a valid url")
|
|
self._batch_size = 128
|
|
|
|
@staticmethod
|
|
def _permute(
|
|
texts: List[str], sorter: Callable = len
|
|
) -> Tuple[List[str], Callable]:
|
|
"""Sort texts in ascending order, and
|
|
delivers a lambda expr, which can sort a same length list
|
|
https://github.com/UKPLab/sentence-transformers/blob/
|
|
c5f93f70eca933c78695c5bc686ceda59651ae3b/sentence_transformers/SentenceTransformer.py#L156
|
|
|
|
Args:
|
|
texts (List[str]): _description_
|
|
sorter (Callable, optional): _description_. Defaults to len.
|
|
|
|
Returns:
|
|
Tuple[List[str], Callable]: _description_
|
|
|
|
Example:
|
|
```
|
|
texts = ["one","three","four"]
|
|
perm_texts, undo = self._permute(texts)
|
|
texts == undo(perm_texts)
|
|
```
|
|
"""
|
|
|
|
if len(texts) == 1:
|
|
# special case query
|
|
return texts, lambda t: t
|
|
length_sorted_idx = np.argsort([-sorter(sen) for sen in texts])
|
|
texts_sorted = [texts[idx] for idx in length_sorted_idx]
|
|
|
|
return texts_sorted, lambda unsorted_embeddings: [ # E731
|
|
unsorted_embeddings[idx] for idx in np.argsort(length_sorted_idx)
|
|
]
|
|
|
|
def _batch(self, texts: List[str]) -> List[List[str]]:
|
|
"""
|
|
splits Lists of text parts into batches of size max `self._batch_size`
|
|
When encoding vector database,
|
|
|
|
Args:
|
|
texts (List[str]): List of sentences
|
|
self._batch_size (int, optional): max batch size of one request.
|
|
|
|
Returns:
|
|
List[List[str]]: Batches of List of sentences
|
|
"""
|
|
if len(texts) == 1:
|
|
# special case query
|
|
return [texts]
|
|
batches = []
|
|
for start_index in range(0, len(texts), self._batch_size):
|
|
batches.append(texts[start_index : start_index + self._batch_size])
|
|
return batches
|
|
|
|
@staticmethod
|
|
def _unbatch(batch_of_texts: List[List[Any]]) -> List[Any]:
|
|
if len(batch_of_texts) == 1 and len(batch_of_texts[0]) == 1:
|
|
# special case query
|
|
return batch_of_texts[0]
|
|
texts = []
|
|
for sublist in batch_of_texts:
|
|
texts.extend(sublist)
|
|
return texts
|
|
|
|
def _kwargs_post_request(self, model: str, texts: List[str]) -> Dict[str, Any]:
|
|
"""Build the kwargs for the Post request, used by sync
|
|
|
|
Args:
|
|
model (str): _description_
|
|
texts (List[str]): _description_
|
|
|
|
Returns:
|
|
Dict[str, Collection[str]]: _description_
|
|
"""
|
|
return dict(
|
|
url=f"{self.host}/embeddings",
|
|
headers={
|
|
# "accept": "application/json",
|
|
"content-type": "application/json",
|
|
},
|
|
json=dict(
|
|
input=texts,
|
|
model=model,
|
|
),
|
|
)
|
|
|
|
def _sync_request_embed(
|
|
self, model: str, batch_texts: List[str]
|
|
) -> List[List[float]]:
|
|
response = requests.post(
|
|
**self._kwargs_post_request(model=model, texts=batch_texts)
|
|
)
|
|
if response.status_code != 200:
|
|
raise Exception(
|
|
f"Infinity returned an unexpected response with status "
|
|
f"{response.status_code}: {response.text}"
|
|
)
|
|
return [e["embedding"] for e in response.json()["data"]]
|
|
|
|
def embed(self, model: str, texts: List[str]) -> List[List[float]]:
|
|
"""call the embedding of model
|
|
|
|
Args:
|
|
model (str): to embedding model
|
|
texts (List[str]): List of sentences to embed.
|
|
|
|
Returns:
|
|
List[List[float]]: List of vectors for each sentence
|
|
"""
|
|
perm_texts, unpermute_func = self._permute(texts)
|
|
perm_texts_batched = self._batch(perm_texts)
|
|
|
|
# Request
|
|
map_args = (
|
|
self._sync_request_embed,
|
|
[model] * len(perm_texts_batched),
|
|
perm_texts_batched,
|
|
)
|
|
if len(perm_texts_batched) == 1:
|
|
embeddings_batch_perm = list(map(*map_args))
|
|
else:
|
|
with ThreadPoolExecutor(32) as p:
|
|
embeddings_batch_perm = list(p.map(*map_args))
|
|
|
|
embeddings_perm = self._unbatch(embeddings_batch_perm)
|
|
embeddings = unpermute_func(embeddings_perm)
|
|
return embeddings
|
|
|
|
async def _async_request(
|
|
self, session: aiohttp.ClientSession, kwargs: Dict[str, Any]
|
|
) -> List[List[float]]:
|
|
async with session.post(**kwargs) as response:
|
|
if response.status != 200:
|
|
raise Exception(
|
|
f"Infinity returned an unexpected response with status "
|
|
f"{response.status}: {response.text}"
|
|
)
|
|
embedding = (await response.json())["embeddings"]
|
|
return [e["embedding"] for e in embedding]
|
|
|
|
async def aembed(self, model: str, texts: List[str]) -> List[List[float]]:
|
|
"""call the embedding of model, async method
|
|
|
|
Args:
|
|
model (str): to embedding model
|
|
texts (List[str]): List of sentences to embed.
|
|
|
|
Returns:
|
|
List[List[float]]: List of vectors for each sentence
|
|
"""
|
|
perm_texts, unpermute_func = self._permute(texts)
|
|
perm_texts_batched = self._batch(perm_texts)
|
|
|
|
# Request
|
|
if self.aiosession is None:
|
|
self.aiosession = aiohttp.ClientSession(
|
|
trust_env=True, connector=aiohttp.TCPConnector(limit=32)
|
|
)
|
|
async with self.aiosession as session:
|
|
embeddings_batch_perm = await asyncio.gather(
|
|
*[
|
|
self._async_request(
|
|
session=session,
|
|
**self._kwargs_post_request(model=model, texts=t),
|
|
)
|
|
for t in perm_texts_batched
|
|
]
|
|
)
|
|
|
|
embeddings_perm = self._unbatch(embeddings_batch_perm)
|
|
embeddings = unpermute_func(embeddings_perm)
|
|
return embeddings
|