mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
e4b38e2822
Update Neo4j Cypher templates to use function callback to pass context instead of passing it in user prompt. Co-authored-by: Erick Friis <erick@langchain.dev>
183 lines
5.5 KiB
Python
183 lines
5.5 KiB
Python
from typing import Any, Dict, List, Union
|
|
|
|
from langchain.chains.graph_qa.cypher_utils import CypherQueryCorrector, Schema
|
|
from langchain.memory import ChatMessageHistory
|
|
from langchain_community.graphs import Neo4jGraph
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
SystemMessage,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompts import (
|
|
ChatPromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
MessagesPlaceholder,
|
|
)
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.runnables import RunnablePassthrough
|
|
from langchain_openai import ChatOpenAI
|
|
|
|
# Connection to Neo4j
|
|
graph = Neo4jGraph()
|
|
|
|
# Cypher validation tool for relationship directions
|
|
corrector_schema = [
|
|
Schema(el["start"], el["type"], el["end"])
|
|
for el in graph.structured_schema.get("relationships")
|
|
]
|
|
cypher_validation = CypherQueryCorrector(corrector_schema)
|
|
|
|
# LLMs
|
|
cypher_llm = ChatOpenAI(model="gpt-4", temperature=0.0)
|
|
qa_llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.0)
|
|
|
|
|
|
def convert_messages(input: List[Dict[str, Any]]) -> ChatMessageHistory:
|
|
history = ChatMessageHistory()
|
|
for item in input:
|
|
history.add_user_message(item["result"]["question"])
|
|
history.add_ai_message(item["result"]["answer"])
|
|
return history
|
|
|
|
|
|
def get_history(input: Dict[str, Any]) -> ChatMessageHistory:
|
|
input.pop("question")
|
|
# Lookback conversation window
|
|
window = 3
|
|
data = graph.query(
|
|
"""
|
|
MATCH (u:User {id:$user_id})-[:HAS_SESSION]->(s:Session {id:$session_id}),
|
|
(s)-[:LAST_MESSAGE]->(last_message)
|
|
MATCH p=(last_message)<-[:NEXT*0.."""
|
|
+ str(window)
|
|
+ """]-()
|
|
WITH p, length(p) AS length
|
|
ORDER BY length DESC LIMIT 1
|
|
UNWIND reverse(nodes(p)) AS node
|
|
MATCH (node)-[:HAS_ANSWER]->(answer)
|
|
RETURN {question:node.text, answer:answer.text} AS result
|
|
""",
|
|
params=input,
|
|
)
|
|
history = convert_messages(data)
|
|
return history.messages
|
|
|
|
|
|
def save_history(input):
|
|
print(input)
|
|
if input.get("function_response"):
|
|
input.pop("function_response")
|
|
# store history to database
|
|
graph.query(
|
|
"""MERGE (u:User {id: $user_id})
|
|
WITH u
|
|
OPTIONAL MATCH (u)-[:HAS_SESSION]->(s:Session{id: $session_id}),
|
|
(s)-[l:LAST_MESSAGE]->(last_message)
|
|
FOREACH (_ IN CASE WHEN last_message IS NULL THEN [1] ELSE [] END |
|
|
CREATE (u)-[:HAS_SESSION]->(s1:Session {id:$session_id}),
|
|
(s1)-[:LAST_MESSAGE]->(q:Question {text:$question, cypher:$query, date:datetime()}),
|
|
(q)-[:HAS_ANSWER]->(:Answer {text:$output}))
|
|
FOREACH (_ IN CASE WHEN last_message IS NOT NULL THEN [1] ELSE [] END |
|
|
CREATE (last_message)-[:NEXT]->(q:Question
|
|
{text:$question, cypher:$query, date:datetime()}),
|
|
(q)-[:HAS_ANSWER]->(:Answer {text:$output}),
|
|
(s)-[:LAST_MESSAGE]->(q)
|
|
DELETE l) """,
|
|
params=input,
|
|
)
|
|
|
|
# Return LLM response to the chain
|
|
return input["output"]
|
|
|
|
|
|
# Generate Cypher statement based on natural language input
|
|
cypher_template = """This is important for my career.
|
|
Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
|
|
{schema}
|
|
|
|
Question: {question}
|
|
Cypher query:""" # noqa: E501
|
|
|
|
cypher_prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
(
|
|
"system",
|
|
"Given an input question, convert it to a Cypher query. No pre-amble.",
|
|
),
|
|
MessagesPlaceholder(variable_name="history"),
|
|
("human", cypher_template),
|
|
]
|
|
)
|
|
|
|
cypher_response = (
|
|
RunnablePassthrough.assign(schema=lambda _: graph.get_schema, history=get_history)
|
|
| cypher_prompt
|
|
| cypher_llm.bind(stop=["\nCypherResult:"])
|
|
| StrOutputParser()
|
|
)
|
|
|
|
# Generate natural language response based on database results
|
|
response_system = """You are an assistant that helps to form nice and human
|
|
understandable answers based on the provided information from tools.
|
|
Do not add any other information that wasn't present in the tools, and use
|
|
very concise style in interpreting results!
|
|
"""
|
|
|
|
response_prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
SystemMessage(content=response_system),
|
|
HumanMessagePromptTemplate.from_template("{question}"),
|
|
MessagesPlaceholder(variable_name="function_response"),
|
|
]
|
|
)
|
|
|
|
|
|
def get_function_response(
|
|
query: str, question: str
|
|
) -> List[Union[AIMessage, ToolMessage]]:
|
|
context = graph.query(cypher_validation(query))
|
|
TOOL_ID = "call_H7fABDuzEau48T10Qn0Lsh0D"
|
|
messages = [
|
|
AIMessage(
|
|
content="",
|
|
additional_kwargs={
|
|
"tool_calls": [
|
|
{
|
|
"id": TOOL_ID,
|
|
"function": {
|
|
"arguments": '{"question":"' + question + '"}',
|
|
"name": "GetInformation",
|
|
},
|
|
"type": "function",
|
|
}
|
|
]
|
|
},
|
|
),
|
|
ToolMessage(content=str(context), tool_call_id=TOOL_ID),
|
|
]
|
|
return messages
|
|
|
|
|
|
chain = (
|
|
RunnablePassthrough.assign(query=cypher_response)
|
|
| RunnablePassthrough.assign(
|
|
function_response=lambda x: get_function_response(x["query"], x["question"]),
|
|
)
|
|
| RunnablePassthrough.assign(
|
|
output=response_prompt | qa_llm | StrOutputParser(),
|
|
)
|
|
| save_history
|
|
)
|
|
|
|
# Add typing for input
|
|
|
|
|
|
class Question(BaseModel):
|
|
question: str
|
|
user_id: str
|
|
session_id: str
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|