langchain/libs/community/tests/integration_tests/cache/test_opensearch_cache.py
Eugene Yurtsev f92006de3c
multiple: langchain 0.2 in master (#21191)
0.2rc 

migrations

- [x] Move memory
- [x] Move remaining retrievers
- [x] graph_qa chains
- [x] some dependency from evaluation code potentially on math utils
- [x] Move openapi chain from `langchain.chains.api.openapi` to
`langchain_community.chains.openapi`
- [x] Migrate `langchain.chains.ernie_functions` to
`langchain_community.chains.ernie_functions`
- [x] migrate `langchain/chains/llm_requests.py` to
`langchain_community.chains.llm_requests`
- [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder`
->
`langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder`
(namespace not ideal, but it needs to be moved to `langchain` to avoid
circular deps)
- [x] unit tests langchain -- add pytest.mark.community to some unit
tests that will stay in langchain
- [x] unit tests community -- move unit tests that depend on community
to community
- [x] mv integration tests that depend on community to community
- [x] mypy checks

Other todo

- [x] Make deprecation warnings not noisy (need to use warn deprecated
and check that things are implemented properly)
- [x] Update deprecation messages with timeline for code removal (likely
we actually won't be removing things until 0.4 release) -- will give
people more time to transition their code.
- [ ] Add information to deprecation warning to show users how to
migrate their code base using langchain-cli
- [ ] Remove any unnecessary requirements in langchain (e.g., is
SQLALchemy required?)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-05-08 16:46:52 -04:00

60 lines
2.0 KiB
Python

from langchain.globals import get_llm_cache, set_llm_cache
from langchain_core.outputs import Generation
from langchain_community.cache import OpenSearchSemanticCache
from tests.integration_tests.cache.fake_embeddings import (
FakeEmbeddings,
)
from tests.unit_tests.llms.fake_llm import FakeLLM
DEFAULT_OPENSEARCH_URL = "http://localhost:9200"
def test_opensearch_semantic_cache() -> None:
"""Test opensearch semantic cache functionality."""
set_llm_cache(
OpenSearchSemanticCache(
embedding=FakeEmbeddings(),
opensearch_url=DEFAULT_OPENSEARCH_URL,
score_threshold=0.0,
)
)
llm = FakeLLM()
params = llm.dict()
params["stop"] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
get_llm_cache().update("foo", llm_string, [Generation(text="fizz")])
cache_output = get_llm_cache().lookup("bar", llm_string)
assert cache_output == [Generation(text="fizz")]
get_llm_cache().clear(llm_string=llm_string)
output = get_llm_cache().lookup("bar", llm_string)
assert output != [Generation(text="fizz")]
def test_opensearch_semantic_cache_multi() -> None:
set_llm_cache(
OpenSearchSemanticCache(
embedding=FakeEmbeddings(),
opensearch_url=DEFAULT_OPENSEARCH_URL,
score_threshold=0.0,
)
)
llm = FakeLLM()
params = llm.dict()
params["stop"] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
get_llm_cache().update(
"foo", llm_string, [Generation(text="fizz"), Generation(text="Buzz")]
)
# foo and bar will have the same embedding produced by FakeEmbeddings
cache_output = get_llm_cache().lookup("bar", llm_string)
assert cache_output == [Generation(text="fizz"), Generation(text="Buzz")]
# clear the cache
get_llm_cache().clear(llm_string=llm_string)
output = get_llm_cache().lookup("bar", llm_string)
assert output != [Generation(text="fizz"), Generation(text="Buzz")]