langchain/libs/community/langchain_community/document_compressors/dashscope_rerank.py
X-HAN 62f13f95e4
community[minor]: add DashScope Rerank (#22403)
**Description:** this PR adds DashScope Rerank capability to Langchain,
you can find DashScope Rerank API from
[here](https://help.aliyun.com/document_detail/2780058.html?spm=a2c4g.2780059.0.0.6d995024FlrJ12)
&
[here](https://help.aliyun.com/document_detail/2780059.html?spm=a2c4g.2780058.0.0.63f75024cr11N9).
[DashScope](https://dashscope.aliyun.com/) is the generative AI service
from Alibaba Cloud (Aliyun). You can create DashScope API key from
[here](https://bailian.console.aliyun.com/?apiKey=1#/api-key).

**Dependencies:** DashScopeRerank depends on `dashscope` python package.

**Twitter handle:** my twitter/x account is https://x.com/LastMonopoly
and I'd like a mention, thanks you!


**Tests and docs**
  1. integration test: `test_dashscope_rerank.py`
  2. example notebook: `dashscope_rerank.ipynb`

**Lint and test**: I have run `make format`, `make lint` and `make test`
from the root of the package I've modified.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-06-05 15:40:21 -07:00

120 lines
3.9 KiB
Python

from __future__ import annotations
from copy import deepcopy
from typing import Any, Dict, List, Optional, Sequence, Union
from langchain_core.callbacks.base import Callbacks
from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.pydantic_v1 import Extra, Field, root_validator
from langchain_core.utils import get_from_dict_or_env
class DashScopeRerank(BaseDocumentCompressor):
"""Document compressor that uses `DashScope Rerank API`."""
client: Any = None
"""DashScope client to use for compressing documents."""
model: Optional[str] = None
"""Model to use for reranking."""
top_n: Optional[int] = 3
"""Number of documents to return."""
dashscope_api_key: Optional[str] = Field(None, alias="api_key")
"""DashScope API key. Must be specified directly or via environment variable
DASHSCOPE_API_KEY."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
if not values.get("client"):
try:
import dashscope
except ImportError:
raise ImportError(
"Could not import dashscope python package. "
"Please install it with `pip install dashscope`."
)
values["client"] = dashscope.TextReRank
values["dashscope_api_key"] = get_from_dict_or_env(
values, "dashscope_api_key", "DASHSCOPE_API_KEY"
)
values["model"] = dashscope.TextReRank.Models.gte_rerank
return values
def rerank(
self,
documents: Sequence[Union[str, Document, dict]],
query: str,
*,
top_n: Optional[int] = -1,
) -> List[Dict[str, Any]]:
"""Returns an ordered list of documents ordered by their relevance to the provided query.
Args:
query: The query to use for reranking.
documents: A sequence of documents to rerank.
top_n : The number of results to return. If None returns all results.
Defaults to self.top_n.
""" # noqa: E501
if len(documents) == 0: # to avoid empty api call
return []
docs = [
doc.page_content if isinstance(doc, Document) else doc for doc in documents
]
top_n = top_n if (top_n is None or top_n > 0) else self.top_n
results = self.client.call(
model=self.model,
query=query,
documents=docs,
top_n=top_n,
return_documents=False,
api_key=self.dashscope_api_key,
)
result_dicts = []
for res in results.output.results:
result_dicts.append(
{"index": res.index, "relevance_score": res.relevance_score}
)
return result_dicts
def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""
Compress documents using DashScope's rerank API.
Args:
documents: A sequence of documents to compress.
query: The query to use for compressing the documents.
callbacks: Callbacks to run during the compression process.
Returns:
A sequence of compressed documents.
"""
compressed = []
for res in self.rerank(documents, query):
doc = documents[res["index"]]
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
doc_copy.metadata["relevance_score"] = res["relevance_score"]
compressed.append(doc_copy)
return compressed