mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
01352bb55f
- **Description:** Implement MiniMaxChat interface, include: - No longer inherits the LLM class (like other chat model) - Update request parameters (v1 -> v2) - update `base url` - update message role (system, user, assistant) - add `stream` function - no longer use `group id` - Implement the `_stream`, `_agenerate`, and `_astream` interfaces [minimax v2 api document](https://platform.minimaxi.com/document/guides/chat-model/V2?id=65e0736ab2845de20908e2dd)
375 lines
14 KiB
Python
375 lines
14 KiB
Python
"""Wrapper around Minimax chat models."""
|
|
import json
|
|
import logging
|
|
from contextlib import asynccontextmanager, contextmanager
|
|
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Type, Union
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@contextmanager
|
|
def connect_httpx_sse(client: Any, method: str, url: str, **kwargs: Any) -> Iterator:
|
|
from httpx_sse import EventSource
|
|
|
|
with client.stream(method, url, **kwargs) as response:
|
|
yield EventSource(response)
|
|
|
|
|
|
@asynccontextmanager
|
|
async def aconnect_httpx_sse(
|
|
client: Any, method: str, url: str, **kwargs: Any
|
|
) -> AsyncIterator:
|
|
from httpx_sse import EventSource
|
|
|
|
async with client.stream(method, url, **kwargs) as response:
|
|
yield EventSource(response)
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]:
|
|
"""Convert a LangChain messages to Dict."""
|
|
message_dict: Dict[str, Any]
|
|
if isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
else:
|
|
raise TypeError(f"Got unknown type '{message.__class__.__name__}'.")
|
|
return message_dict
|
|
|
|
|
|
def _convert_dict_to_message(dct: Dict[str, Any]) -> BaseMessage:
|
|
"""Convert a dict to LangChain message."""
|
|
role = dct.get("role")
|
|
content = dct.get("content", "")
|
|
if role == "assistant":
|
|
additional_kwargs = {}
|
|
tool_calls = dct.get("tool_calls", None)
|
|
if tool_calls is not None:
|
|
additional_kwargs["tool_calls"] = tool_calls
|
|
return AIMessage(content=content, additional_kwargs=additional_kwargs)
|
|
return ChatMessage(role=role, content=content) # type: ignore[arg-type]
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
dct: Dict[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = dct.get("role")
|
|
content = dct.get("content", "")
|
|
additional_kwargs = {}
|
|
tool_calls = dct.get("tool_call", None)
|
|
if tool_calls is not None:
|
|
additional_kwargs["tool_calls"] = tool_calls
|
|
|
|
if role == "assistant" or default_class == AIMessageChunk:
|
|
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
|
|
if role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
|
|
return default_class(content=content) # type: ignore[call-arg]
|
|
|
|
|
|
class MiniMaxChat(BaseChatModel):
|
|
"""MiniMax large language models.
|
|
|
|
To use, you should have the environment variable``MINIMAX_API_KEY`` set with
|
|
your API token, or pass it as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import MiniMaxChat
|
|
llm = MiniMaxChat(model="abab5-chat")
|
|
|
|
"""
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {**{"model": self.model}, **self._default_params}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "minimax"
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
return {
|
|
"model": self.model,
|
|
"max_tokens": self.max_tokens,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
**self.model_kwargs,
|
|
}
|
|
|
|
_client: Any
|
|
model: str = "abab6.5-chat"
|
|
"""Model name to use."""
|
|
max_tokens: int = 256
|
|
"""Denotes the number of tokens to predict per generation."""
|
|
temperature: float = 0.7
|
|
"""A non-negative float that tunes the degree of randomness in generation."""
|
|
top_p: float = 0.95
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
minimax_api_host: str = Field(
|
|
default="https://api.minimax.chat/v1/text/chatcompletion_v2", alias="base_url"
|
|
)
|
|
minimax_group_id: Optional[str] = Field(default=None, alias="group_id")
|
|
"""[DEPRECATED, keeping it for for backward compatibility] Group Id"""
|
|
minimax_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
|
|
"""Minimax API Key"""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
@root_validator(allow_reuse=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
values["minimax_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "minimax_api_key", "MINIMAX_API_KEY")
|
|
)
|
|
values["minimax_group_id"] = get_from_dict_or_env(
|
|
values, "minimax_group_id", "MINIMAX_GROUP_ID"
|
|
)
|
|
# Get custom api url from environment.
|
|
values["minimax_api_host"] = get_from_dict_or_env(
|
|
values,
|
|
"minimax_api_host",
|
|
"MINIMAX_API_HOST",
|
|
values["minimax_api_host"],
|
|
)
|
|
return values
|
|
|
|
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
|
|
generations = []
|
|
if not isinstance(response, dict):
|
|
response = response.dict()
|
|
for res in response["choices"]:
|
|
message = _convert_dict_to_message(res["message"])
|
|
generation_info = dict(finish_reason=res.get("finish_reason"))
|
|
generations.append(
|
|
ChatGeneration(message=message, generation_info=generation_info)
|
|
)
|
|
token_usage = response.get("usage", {})
|
|
llm_output = {
|
|
"token_usage": token_usage,
|
|
"model_name": self.model,
|
|
}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
def _create_payload_parameters( # type: ignore[no-untyped-def]
|
|
self, messages: List[BaseMessage], is_stream: bool = False, **kwargs
|
|
) -> Dict[str, Any]:
|
|
"""Create API request body parameters."""
|
|
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
|
payload = self._default_params
|
|
payload["messages"] = message_dicts
|
|
payload.update(**kwargs)
|
|
if is_stream:
|
|
payload["stream"] = True
|
|
|
|
return payload
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
"""Generate next turn in the conversation.
|
|
Args:
|
|
messages: The history of the conversation as a list of messages. Code chat
|
|
does not support context.
|
|
stop: The list of stop words (optional).
|
|
run_manager: The CallbackManager for LLM run, it's not used at the moment.
|
|
stream: Whether to stream the results or not.
|
|
|
|
Returns:
|
|
The ChatResult that contains outputs generated by the model.
|
|
|
|
Raises:
|
|
ValueError: if the last message in the list is not from human.
|
|
"""
|
|
if not messages:
|
|
raise ValueError(
|
|
"You should provide at least one message to start the chat!"
|
|
)
|
|
is_stream = stream if stream is not None else self.streaming
|
|
if is_stream:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
payload = self._create_payload_parameters(messages, **kwargs)
|
|
api_key = ""
|
|
if self.minimax_api_key is not None:
|
|
api_key = self.minimax_api_key.get_secret_value()
|
|
headers = {
|
|
"Authorization": f"Bearer {api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
import httpx
|
|
|
|
with httpx.Client(headers=headers, timeout=60) as client:
|
|
response = client.post(self.minimax_api_host, json=payload)
|
|
response.raise_for_status()
|
|
|
|
return self._create_chat_result(response.json())
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
"""Stream the chat response in chunks."""
|
|
payload = self._create_payload_parameters(messages, is_stream=True, **kwargs)
|
|
api_key = ""
|
|
if self.minimax_api_key is not None:
|
|
api_key = self.minimax_api_key.get_secret_value()
|
|
headers = {
|
|
"Authorization": f"Bearer {api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
import httpx
|
|
|
|
with httpx.Client(headers=headers, timeout=60) as client:
|
|
with connect_httpx_sse(
|
|
client, "POST", self.minimax_api_host, json=payload
|
|
) as event_source:
|
|
for sse in event_source.iter_sse():
|
|
chunk = json.loads(sse.data)
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
choice = chunk["choices"][0]
|
|
chunk = _convert_delta_to_message_chunk(
|
|
choice["delta"], AIMessageChunk
|
|
)
|
|
finish_reason = choice.get("finish_reason", None)
|
|
|
|
generation_info = (
|
|
{"finish_reason": finish_reason}
|
|
if finish_reason is not None
|
|
else None
|
|
)
|
|
chunk = ChatGenerationChunk(
|
|
message=chunk, generation_info=generation_info
|
|
)
|
|
yield chunk
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
if finish_reason is not None:
|
|
break
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if not messages:
|
|
raise ValueError(
|
|
"You should provide at least one message to start the chat!"
|
|
)
|
|
is_stream = stream if stream is not None else self.streaming
|
|
if is_stream:
|
|
stream_iter = self._astream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
payload = self._create_payload_parameters(messages, **kwargs)
|
|
api_key = ""
|
|
if self.minimax_api_key is not None:
|
|
api_key = self.minimax_api_key.get_secret_value()
|
|
headers = {
|
|
"Authorization": f"Bearer {api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
import httpx
|
|
|
|
async with httpx.AsyncClient(headers=headers, timeout=60) as client:
|
|
response = await client.post(self.minimax_api_host, json=payload)
|
|
response.raise_for_status()
|
|
return self._create_chat_result(response.json())
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
payload = self._create_payload_parameters(messages, is_stream=True, **kwargs)
|
|
api_key = ""
|
|
if self.minimax_api_key is not None:
|
|
api_key = self.minimax_api_key.get_secret_value()
|
|
headers = {
|
|
"Authorization": f"Bearer {api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
import httpx
|
|
|
|
async with httpx.AsyncClient(headers=headers, timeout=60) as client:
|
|
async with aconnect_httpx_sse(
|
|
client, "POST", self.minimax_api_host, json=payload
|
|
) as event_source:
|
|
async for sse in event_source.aiter_sse():
|
|
chunk = json.loads(sse.data)
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
choice = chunk["choices"][0]
|
|
chunk = _convert_delta_to_message_chunk(
|
|
choice["delta"], AIMessageChunk
|
|
)
|
|
finish_reason = choice.get("finish_reason", None)
|
|
|
|
generation_info = (
|
|
{"finish_reason": finish_reason}
|
|
if finish_reason is not None
|
|
else None
|
|
)
|
|
chunk = ChatGenerationChunk(
|
|
message=chunk, generation_info=generation_info
|
|
)
|
|
yield chunk
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
if finish_reason is not None:
|
|
break
|