langchain/docs/extras/integrations/text_embedding/spacy_embedding.ipynb
Leonid Ganeline fdba711d28
docs integrations/embeddings consistency (#10302)
Updated `integrations/embeddings`: fixed titles; added links,
descriptions
Updated `integrations/providers`.
2023-09-07 19:53:33 -07:00

138 lines
3.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# SpaCy\n",
"\n",
">[spaCy](https://spacy.io/) is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython.\n",
" \n",
"\n",
"## Installation and Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#!pip install spacy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Import the necessary classes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.spacy_embeddings import SpacyEmbeddings"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example\n",
"\n",
"Initialize SpacyEmbeddings.This will load the Spacy model into memory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embedder = SpacyEmbeddings()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Define some example texts . These could be any documents that you want to analyze - for example, news articles, social media posts, or product reviews."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"texts = [\n",
" \"The quick brown fox jumps over the lazy dog.\",\n",
" \"Pack my box with five dozen liquor jugs.\",\n",
" \"How vexingly quick daft zebras jump!\",\n",
" \"Bright vixens jump; dozy fowl quack.\",\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generate and print embeddings for the texts . The SpacyEmbeddings class generates an embedding for each document, which is a numerical representation of the document's content. These embeddings can be used for various natural language processing tasks, such as document similarity comparison or text classification."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = embedder.embed_documents(texts)\n",
"for i, embedding in enumerate(embeddings):\n",
" print(f\"Embedding for document {i+1}: {embedding}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generate and print an embedding for a single piece of text. You can also generate an embedding for a single piece of text, such as a search query. This can be useful for tasks like information retrieval, where you want to find documents that are similar to a given query."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"query = \"Quick foxes and lazy dogs.\"\n",
"query_embedding = embedder.embed_query(query)\n",
"print(f\"Embedding for query: {query_embedding}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}