langchain/docs/extras/integrations/text_embedding/gradient.ipynb
Michael Feil 94e31647bd
Support for Gradient.ai embedding (#10968)
Adds support for gradient.ai's embedding model.

This will remain a Draft, as the code will likely be refactored with the
`pip install gradientai` python sdk.
2023-09-23 16:10:23 -07:00

151 lines
3.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Gradient\n",
"\n",
"`Gradient` allows to create `Embeddings` as well fine tune and get completions on LLMs with a simple web API.\n",
"\n",
"This notebook goes over how to use Langchain with Embeddings of [Gradient](https://gradient.ai/).\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import GradientEmbeddings"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the Environment API Key\n",
"Make sure to get your API key from Gradient AI. You are given $10 in free credits to test and fine-tune different models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from getpass import getpass\n",
"import os\n",
"\n",
"if not os.environ.get(\"GRADIENT_ACCESS_TOKEN\",None):\n",
" # Access token under https://auth.gradient.ai/select-workspace\n",
" os.environ[\"GRADIENT_ACCESS_TOKEN\"] = getpass(\"gradient.ai access token:\")\n",
"if not os.environ.get(\"GRADIENT_WORKSPACE_ID\",None):\n",
" # `ID` listed in `$ gradient workspace list`\n",
" # also displayed after login at at https://auth.gradient.ai/select-workspace\n",
" os.environ[\"GRADIENT_WORKSPACE_ID\"] = getpass(\"gradient.ai workspace id:\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Optional: Validate your Enviroment variables ```GRADIENT_ACCESS_TOKEN``` and ```GRADIENT_WORKSPACE_ID``` to get currently deployed models. Using the `gradientai` Python package."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install gradientai"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the Gradient instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"documents = [\"Pizza is a dish.\",\"Paris is the capital of France\", \"numpy is a lib for linear algebra\"]\n",
"query = \"Where is Paris?\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = GradientEmbeddings(\n",
" model=\"bge-large\"\n",
")\n",
"\n",
"documents_embedded = embeddings.embed_documents(documents)\n",
"query_result = embeddings.embed_query(query)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# (demo) compute similarity\n",
"import numpy as np\n",
"\n",
"scores = np.array(documents_embedded) @ np.array(query_result).T\n",
"dict(zip(documents, scores))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}