langchain/docs/extras/integrations/text_embedding/awadb.ipynb
Leonid Ganeline fdba711d28
docs integrations/embeddings consistency (#10302)
Updated `integrations/embeddings`: fixed titles; added links,
descriptions
Updated `integrations/providers`.
2023-09-07 19:53:33 -07:00

112 lines
2.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "b14a24db",
"metadata": {},
"source": [
"# AwaDB\n",
"\n",
">[AwaDB](https://github.com/awa-ai/awadb) is an AI Native database for the search and storage of embedding vectors used by LLM Applications.\n",
"\n",
"This notebook explains how to use `AwaEmbeddings` in LangChain."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0ab948fc",
"metadata": {},
"outputs": [],
"source": [
"# pip install awadb"
]
},
{
"cell_type": "markdown",
"id": "67c637ca",
"metadata": {},
"source": [
"## import the library"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5709b030",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import AwaEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1756b1ba",
"metadata": {},
"outputs": [],
"source": [
"Embedding = AwaEmbeddings()"
]
},
{
"cell_type": "markdown",
"id": "4a2a098d",
"metadata": {},
"source": [
"# Set embedding model\n",
"Users can use `Embedding.set_model()` to specify the embedding model. \\\n",
"The input of this function is a string which represents the model's name. \\\n",
"The list of currently supported models can be obtained [here](https://github.com/awa-ai/awadb) \\ \\ \n",
"\n",
"The **default model** is `all-mpnet-base-v2`, it can be used without setting."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "584b9af5",
"metadata": {},
"outputs": [],
"source": [
"text = \"our embedding test\"\n",
"\n",
"Embedding.set_model(\"all-mpnet-base-v2\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "be18b873",
"metadata": {},
"outputs": [],
"source": [
"res_query = Embedding.embed_query(\"The test information\")\n",
"res_document = Embedding.embed_documents([\"test1\", \"another test\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}