mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
de6e6c764e
# Add MosaicML inference endpoints This PR adds support in langchain for MosaicML inference endpoints. We both serve a select few open source models, and allow customers to deploy their own models using our inference service. Docs are here (https://docs.mosaicml.com/en/latest/inference.html), and sign up form is here (https://forms.mosaicml.com/demo?utm_source=langchain). I'm not intimately familiar with the details of langchain, or the contribution process, so please let me know if there is anything that needs fixing or this is the wrong way to submit a new integration, thanks! I'm also not sure what the procedure is for integration tests. I have tested locally with my api key. ## Who can review? @hwchase17 --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
79 lines
2.6 KiB
Python
79 lines
2.6 KiB
Python
"""Test MosaicML API wrapper."""
|
|
import pytest
|
|
|
|
from langchain.llms.mosaicml import PROMPT_FOR_GENERATION_FORMAT, MosaicML
|
|
|
|
|
|
def test_mosaicml_llm_call() -> None:
|
|
"""Test valid call to MosaicML."""
|
|
llm = MosaicML(model_kwargs={})
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_mosaicml_endpoint_change() -> None:
|
|
"""Test valid call to MosaicML."""
|
|
new_url = "https://models.hosted-on.mosaicml.hosting/dolly-12b/v1/predict"
|
|
llm = MosaicML(endpoint_url=new_url)
|
|
assert llm.endpoint_url == new_url
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_mosaicml_extra_kwargs() -> None:
|
|
llm = MosaicML(model_kwargs={"max_new_tokens": 1})
|
|
assert llm.model_kwargs == {"max_new_tokens": 1}
|
|
|
|
output = llm("Say foo:")
|
|
|
|
assert isinstance(output, str)
|
|
|
|
# should only generate one new token (which might be a new line or whitespace token)
|
|
assert len(output.split()) <= 1
|
|
|
|
|
|
def test_instruct_prompt() -> None:
|
|
"""Test instruct prompt."""
|
|
llm = MosaicML(inject_instruction_format=True, model_kwargs={"do_sample": False})
|
|
instruction = "Repeat the word foo"
|
|
prompt = llm._transform_prompt(instruction)
|
|
expected_prompt = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
|
|
assert prompt == expected_prompt
|
|
output = llm(prompt)
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_retry_logic() -> None:
|
|
"""Tests that two queries (which would usually exceed the rate limit) works"""
|
|
llm = MosaicML(inject_instruction_format=True, model_kwargs={"do_sample": False})
|
|
instruction = "Repeat the word foo"
|
|
prompt = llm._transform_prompt(instruction)
|
|
expected_prompt = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
|
|
assert prompt == expected_prompt
|
|
output = llm(prompt)
|
|
assert isinstance(output, str)
|
|
output = llm(prompt)
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_short_retry_does_not_loop() -> None:
|
|
"""Tests that two queries with a short retry sleep does not infinite loop"""
|
|
llm = MosaicML(
|
|
inject_instruction_format=True,
|
|
model_kwargs={"do_sample": False},
|
|
retry_sleep=0.1,
|
|
)
|
|
instruction = "Repeat the word foo"
|
|
prompt = llm._transform_prompt(instruction)
|
|
expected_prompt = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
|
|
assert prompt == expected_prompt
|
|
|
|
with pytest.raises(
|
|
ValueError,
|
|
match="Error raised by inference API: Rate limit exceeded: 1 per 1 second",
|
|
):
|
|
output = llm(prompt)
|
|
assert isinstance(output, str)
|
|
output = llm(prompt)
|
|
assert isinstance(output, str)
|