mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
3179ee3a56
Still don't have good "how to's", and the guides / examples section could be further pruned and improved, but this PR adds a couple examples for each of the common evaluator interfaces. - [x] Example docs for each implemented evaluator - [x] "how to make a custom evalutor" notebook for each low level APIs (comparison, string, agent) - [x] Move docs to modules area - [x] Link to reference docs for more information - [X] Still need to finish the evaluation index page - ~[ ] Don't have good data generation section~ - ~[ ] Don't have good how to section for other common scenarios / FAQs like regression testing, testing over similar inputs to measure sensitivity, etc.~
223 lines
5.2 KiB
Plaintext
223 lines
5.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2da95378",
|
|
"metadata": {},
|
|
"source": [
|
|
"# String Distance\n",
|
|
"\n",
|
|
"One of the simplest ways to compare an LLM or chain's string output against a reference label is by using string distance measurements such as Levenshtein or postfix distance. This can be used alongside approximate/fuzzy matching criteria for very basic unit testing.\n",
|
|
"\n",
|
|
"This can be accessed using the `string_distance` evaluator, which uses distance metric's from the [rapidfuzz](https://github.com/maxbachmann/RapidFuzz) library.\n",
|
|
"\n",
|
|
"**Note:** The returned scores are _distances_, meaning lower is typically \"better\".\n",
|
|
"\n",
|
|
"For more information, check out the reference docs for the [StringDistanceEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.StringDistanceEvalChain.html#langchain.evaluation.string_distance.base.StringDistanceEvalChain) for more info."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "8b47b909-3251-4774-9a7d-e436da4f8979",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# %pip install rapidfuzz"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f6790c46",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.evaluation import load_evaluator\n",
|
|
"\n",
|
|
"evaluator = load_evaluator(\"string_distance\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "49ad9139",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 12}"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"evaluator.evaluate_strings(\n",
|
|
" prediction=\"The job is completely done.\",\n",
|
|
" reference=\"The job is done\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "c06a2296",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 4}"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# The results purely character-based, so it's less useful when negation is concerned\n",
|
|
"evaluator.evaluate_strings(\n",
|
|
" prediction=\"The job is done.\",\n",
|
|
" reference=\"The job isn't done\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b8ed1f12-09a6-4e90-a69d-c8df525ff293",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Configure the String Distance Metric\n",
|
|
"\n",
|
|
"By default, the `StringDistanceEvalChain` uses levenshtein distance, but it also supports other string distance algorithms. Configure using the `distance` argument."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "a88bc7d7-62d3-408d-b0e0-43abcecf35c8",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<StringDistance.DAMERAU_LEVENSHTEIN: 'damerau_levenshtein'>,\n",
|
|
" <StringDistance.LEVENSHTEIN: 'levenshtein'>,\n",
|
|
" <StringDistance.JARO: 'jaro'>,\n",
|
|
" <StringDistance.JARO_WINKLER: 'jaro_winkler'>]"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain.evaluation import StringDistance\n",
|
|
"\n",
|
|
"list(StringDistance)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "0c079864-0175-4d06-9d3f-a0e51dd3977c",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"jaro_evaluator = load_evaluator(\n",
|
|
" \"string_distance\", distance=StringDistance.JARO, requires_reference=True\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "a8dfb900-14f3-4a1f-8736-dd1d86a1264c",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 0.19259259259259254}"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"jaro_evaluator.evaluate_strings(\n",
|
|
" prediction=\"The job is completely done.\",\n",
|
|
" reference=\"The job is done\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "7020b046-0ef7-40cc-8778-b928e35f3ce1",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 0.12083333333333324}"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"jaro_evaluator.evaluate_strings(\n",
|
|
" prediction=\"The job is done.\",\n",
|
|
" reference=\"The job isn't done\",\n",
|
|
")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|