mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
a0c2281540
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
129 lines
4.4 KiB
Python
129 lines
4.4 KiB
Python
"""Chain that interprets a prompt and executes bash operations."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import logging
|
|
import warnings
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.schema import BasePromptTemplate, OutputParserException
|
|
from langchain_core.callbacks.manager import CallbackManagerForChainRun
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
|
|
from langchain_experimental.llm_bash.bash import BashProcess
|
|
from langchain_experimental.llm_bash.prompt import PROMPT
|
|
from langchain_experimental.pydantic_v1 import Extra, Field, root_validator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LLMBashChain(Chain):
|
|
"""Chain that interprets a prompt and executes bash operations.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain.chains import LLMBashChain
|
|
from langchain_community.llms import OpenAI
|
|
llm_bash = LLMBashChain.from_llm(OpenAI())
|
|
"""
|
|
|
|
llm_chain: LLMChain
|
|
llm: Optional[BaseLanguageModel] = None
|
|
"""[Deprecated] LLM wrapper to use."""
|
|
input_key: str = "question" #: :meta private:
|
|
output_key: str = "answer" #: :meta private:
|
|
prompt: BasePromptTemplate = PROMPT
|
|
"""[Deprecated]"""
|
|
bash_process: BashProcess = Field(default_factory=BashProcess) #: :meta private:
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
|
|
@root_validator(pre=True)
|
|
def raise_deprecation(cls, values: Dict) -> Dict:
|
|
if "llm" in values:
|
|
warnings.warn(
|
|
"Directly instantiating an LLMBashChain with an llm is deprecated. "
|
|
"Please instantiate with llm_chain or using the from_llm class method."
|
|
)
|
|
if "llm_chain" not in values and values["llm"] is not None:
|
|
prompt = values.get("prompt", PROMPT)
|
|
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
|
|
return values
|
|
|
|
# TODO: move away from `root_validator` since it is deprecated in pydantic v2
|
|
# and causes mypy type-checking failures (hence the `type: ignore`)
|
|
@root_validator # type: ignore[call-overload]
|
|
def validate_prompt(cls, values: Dict) -> Dict:
|
|
if values["llm_chain"].prompt.output_parser is None:
|
|
raise ValueError(
|
|
"The prompt used by llm_chain is expected to have an output_parser."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Expect input key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Expect output key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.output_key]
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, str]:
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
_run_manager.on_text(inputs[self.input_key], verbose=self.verbose)
|
|
|
|
t = self.llm_chain.predict(
|
|
question=inputs[self.input_key], callbacks=_run_manager.get_child()
|
|
)
|
|
_run_manager.on_text(t, color="green", verbose=self.verbose)
|
|
t = t.strip()
|
|
try:
|
|
parser = self.llm_chain.prompt.output_parser
|
|
command_list = parser.parse(t) # type: ignore[union-attr]
|
|
except OutputParserException as e:
|
|
_run_manager.on_chain_error(e, verbose=self.verbose)
|
|
raise e
|
|
|
|
if self.verbose:
|
|
_run_manager.on_text("\nCode: ", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
str(command_list), color="yellow", verbose=self.verbose
|
|
)
|
|
output = self.bash_process.run(command_list)
|
|
_run_manager.on_text("\nAnswer: ", verbose=self.verbose)
|
|
_run_manager.on_text(output, color="yellow", verbose=self.verbose)
|
|
return {self.output_key: output}
|
|
|
|
@property
|
|
def _chain_type(self) -> str:
|
|
return "llm_bash_chain"
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
prompt: BasePromptTemplate = PROMPT,
|
|
**kwargs: Any,
|
|
) -> LLMBashChain:
|
|
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
|
return cls(llm_chain=llm_chain, **kwargs)
|