mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
a9246333fd
<!-- Thank you for contributing to LangChain! Your PR will appear in our release under the title you set. Please make sure it highlights your valuable contribution. Replace this with a description of the change, the issue it fixes (if applicable), and relevant context. List any dependencies required for this change. After you're done, someone will review your PR. They may suggest improvements. If no one reviews your PR within a few days, feel free to @-mention the same people again, as notifications can get lost. Finally, we'd love to show appreciation for your contribution - if you'd like us to shout you out on Twitter, please also include your handle! --> <!-- Remove if not applicable --> Fixes: ChatAnthropic was mutating the input message list during formatting which isn't ideal bc you could be changing the behavior for other chat models when using the same input #### Before submitting <!-- If you're adding a new integration, please include: 1. a test for the integration - favor unit tests that does not rely on network access. 2. an example notebook showing its use See contribution guidelines for more information on how to write tests, lint etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md --> #### Who can review? Tag maintainers/contributors who might be interested:
100 lines
3.4 KiB
Python
100 lines
3.4 KiB
Python
"""Test Anthropic API wrapper."""
|
|
from typing import List
|
|
|
|
import pytest
|
|
|
|
from langchain.callbacks.manager import CallbackManager
|
|
from langchain.chat_models.anthropic import ChatAnthropic
|
|
from langchain.schema import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
ChatGeneration,
|
|
HumanMessage,
|
|
LLMResult,
|
|
)
|
|
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
|
|
|
|
|
def test_anthropic_call() -> None:
|
|
"""Test valid call to anthropic."""
|
|
chat = ChatAnthropic(model="test")
|
|
message = HumanMessage(content="Hello")
|
|
response = chat([message])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_anthropic_generate() -> None:
|
|
"""Test generate method of anthropic."""
|
|
chat = ChatAnthropic(model="test")
|
|
chat_messages: List[List[BaseMessage]] = [
|
|
[HumanMessage(content="How many toes do dogs have?")]
|
|
]
|
|
messages_copy = [messages.copy() for messages in chat_messages]
|
|
result: LLMResult = chat.generate(chat_messages)
|
|
assert isinstance(result, LLMResult)
|
|
for response in result.generations[0]:
|
|
assert isinstance(response, ChatGeneration)
|
|
assert isinstance(response.text, str)
|
|
assert response.text == response.message.content
|
|
assert chat_messages == messages_copy
|
|
|
|
|
|
def test_anthropic_streaming() -> None:
|
|
"""Test streaming tokens from anthropic."""
|
|
chat = ChatAnthropic(model="test", streaming=True)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat([message])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_anthropic_streaming_callback() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = ChatAnthropic(
|
|
model="test",
|
|
streaming=True,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Write me a sentence with 10 words.")
|
|
chat([message])
|
|
assert callback_handler.llm_streams > 1
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_async_streaming_callback() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = ChatAnthropic(
|
|
model="test",
|
|
streaming=True,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
chat_messages: List[BaseMessage] = [
|
|
HumanMessage(content="How many toes do dogs have?")
|
|
]
|
|
result: LLMResult = await chat.agenerate([chat_messages])
|
|
assert callback_handler.llm_streams > 1
|
|
assert isinstance(result, LLMResult)
|
|
for response in result.generations[0]:
|
|
assert isinstance(response, ChatGeneration)
|
|
assert isinstance(response.text, str)
|
|
assert response.text == response.message.content
|
|
|
|
|
|
def test_formatting() -> None:
|
|
chat = ChatAnthropic()
|
|
|
|
chat_messages: List[BaseMessage] = [HumanMessage(content="Hello")]
|
|
result = chat._convert_messages_to_prompt(chat_messages)
|
|
assert result == "\n\nHuman: Hello\n\nAssistant:"
|
|
|
|
chat_messages = [HumanMessage(content="Hello"), AIMessage(content="Answer:")]
|
|
result = chat._convert_messages_to_prompt(chat_messages)
|
|
assert result == "\n\nHuman: Hello\n\nAssistant: Answer:"
|