mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
16945c9922
Various miscellaneous fixes to most pages in the 'Retrievers' section of the documentation: - "VectorStore" and "vectorstore" changed to "vector store" for consistency - Various spelling, grammar, and formatting improvements for readability Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
404 lines
13 KiB
Plaintext
404 lines
13 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "13afcae7",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Self-querying with Pinecone\n",
|
|
"\n",
|
|
"In the walkthrough we'll demo the `SelfQueryRetriever` with a `Pinecone` vector store."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "68e75fb9",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Creating a Pinecone index\n",
|
|
"First we'll want to create a `Pinecone` vector store and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n",
|
|
"\n",
|
|
"To use Pinecone, you have to have `pinecone` package installed and you must have an API key and an environment. Here are the [installation instructions](https://docs.pinecone.io/docs/quickstart).\n",
|
|
"\n",
|
|
"**Note:** The self-query retriever requires you to have `lark` package installed."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "63a8af5b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# !pip install lark"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2f633445-57fe-45f3-84f7-80d3941b9e53",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#!pip install pinecone-client"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "3eb9c9a4",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pinecone/index.py:4: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n",
|
|
" from tqdm.autonotebook import tqdm\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"import pinecone\n",
|
|
"\n",
|
|
"\n",
|
|
"pinecone.init(\n",
|
|
" api_key=os.environ[\"PINECONE_API_KEY\"], environment=os.environ[\"PINECONE_ENV\"]\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "cb4a5787",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.schema import Document\n",
|
|
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
|
"from langchain.vectorstores import Pinecone\n",
|
|
"\n",
|
|
"embeddings = OpenAIEmbeddings()\n",
|
|
"# create new index\n",
|
|
"pinecone.create_index(\"langchain-self-retriever-demo\", dimension=1536)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "bcbe04d9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"docs = [\n",
|
|
" Document(\n",
|
|
" page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",\n",
|
|
" metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": [\"action\", \"science fiction\"]},\n",
|
|
" ),\n",
|
|
" Document(\n",
|
|
" page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\",\n",
|
|
" metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2},\n",
|
|
" ),\n",
|
|
" Document(\n",
|
|
" page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\",\n",
|
|
" metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6},\n",
|
|
" ),\n",
|
|
" Document(\n",
|
|
" page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\",\n",
|
|
" metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3},\n",
|
|
" ),\n",
|
|
" Document(\n",
|
|
" page_content=\"Toys come alive and have a blast doing so\",\n",
|
|
" metadata={\"year\": 1995, \"genre\": \"animated\"},\n",
|
|
" ),\n",
|
|
" Document(\n",
|
|
" page_content=\"Three men walk into the Zone, three men walk out of the Zone\",\n",
|
|
" metadata={\n",
|
|
" \"year\": 1979,\n",
|
|
" \"rating\": 9.9,\n",
|
|
" \"director\": \"Andrei Tarkovsky\",\n",
|
|
" \"genre\": [\"science fiction\", \"thriller\"],\n",
|
|
" \"rating\": 9.9,\n",
|
|
" },\n",
|
|
" ),\n",
|
|
"]\n",
|
|
"vectorstore = Pinecone.from_documents(\n",
|
|
" docs, embeddings, index_name=\"langchain-self-retriever-demo\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5ecaab6d",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Creating our self-querying retriever\n",
|
|
"Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "86e34dbf",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.llms import OpenAI\n",
|
|
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
|
|
"from langchain.chains.query_constructor.base import AttributeInfo\n",
|
|
"\n",
|
|
"metadata_field_info = [\n",
|
|
" AttributeInfo(\n",
|
|
" name=\"genre\",\n",
|
|
" description=\"The genre of the movie\",\n",
|
|
" type=\"string or list[string]\",\n",
|
|
" ),\n",
|
|
" AttributeInfo(\n",
|
|
" name=\"year\",\n",
|
|
" description=\"The year the movie was released\",\n",
|
|
" type=\"integer\",\n",
|
|
" ),\n",
|
|
" AttributeInfo(\n",
|
|
" name=\"director\",\n",
|
|
" description=\"The name of the movie director\",\n",
|
|
" type=\"string\",\n",
|
|
" ),\n",
|
|
" AttributeInfo(\n",
|
|
" name=\"rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n",
|
|
" ),\n",
|
|
"]\n",
|
|
"document_content_description = \"Brief summary of a movie\"\n",
|
|
"llm = OpenAI(temperature=0)\n",
|
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
|
" llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ea9df8d4",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Testing it out\n",
|
|
"And now we can try actually using our retriever!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "38a126e9",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"query='dinosaur' filter=None\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': ['action', 'science fiction'], 'rating': 7.7, 'year': 1993.0}),\n",
|
|
" Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0}),\n",
|
|
" Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}),\n",
|
|
" Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'director': 'Christopher Nolan', 'rating': 8.2, 'year': 2010.0})]"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# This example only specifies a relevant query\n",
|
|
"retriever.get_relevant_documents(\"What are some movies about dinosaurs\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "fc3f1e6e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}),\n",
|
|
" Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})]"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# This example only specifies a filter\n",
|
|
"retriever.get_relevant_documents(\"I want to watch a movie rated higher than 8.5\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "b19d4da0",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig')\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'director': 'Greta Gerwig', 'rating': 8.3, 'year': 2019.0})]"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# This example specifies a query and a filter\n",
|
|
"retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "f900e40e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)])\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})]"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# This example specifies a composite filter\n",
|
|
"retriever.get_relevant_documents(\n",
|
|
" \"What's a highly rated (above 8.5) science fiction film?\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "12a51522",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990.0), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005.0), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')])\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0})]"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# This example specifies a query and composite filter\n",
|
|
"retriever.get_relevant_documents(\n",
|
|
" \"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "6fe7536c",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Filter k\n",
|
|
"\n",
|
|
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
|
|
"\n",
|
|
"We can do this by passing `enable_limit=True` to the constructor."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3a2937c2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
|
" llm,\n",
|
|
" vectorstore,\n",
|
|
" document_content_description,\n",
|
|
" metadata_field_info,\n",
|
|
" enable_limit=True,\n",
|
|
" verbose=True,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "83d233aa",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# This example only specifies a relevant query\n",
|
|
"retriever.get_relevant_documents(\"What are two movies about dinosaurs\")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|