mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
b410dc76aa
- Create a new docker-compose file to start an Elasticsearch instance for integration tests. - Add new tests to `test_elasticsearch.py` to verify Elasticsearch functionality. - Include an optional group `test_integration` in the `pyproject.toml` file. This group should contain dependencies for integration tests and can be installed using the command `poetry install --with test_integration`. Any new dependencies should be added by running `poetry add some_new_deps --group "test_integration" ` Note: New tests running in live mode, which involve end-to-end testing of the OpenAI API. In the future, adding `pytest-vcr` to record and replay all API requests would be a nice feature for testing process.More info: https://pytest-vcr.readthedocs.io/en/latest/ Fixes https://github.com/hwchase17/langchain/issues/2386
138 lines
5.2 KiB
Python
138 lines
5.2 KiB
Python
"""Test ElasticSearch functionality."""
|
|
import logging
|
|
import os
|
|
from typing import Generator, List, Union
|
|
|
|
import pytest
|
|
from elasticsearch import Elasticsearch
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.document_loaders import TextLoader
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
from langchain.text_splitter import CharacterTextSplitter
|
|
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch
|
|
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
"""
|
|
cd tests/integration_tests/vectorstores/docker-compose
|
|
docker-compose -f elasticsearch.yml up
|
|
"""
|
|
|
|
|
|
class TestElasticsearch:
|
|
@pytest.fixture(scope="class", autouse=True)
|
|
def elasticsearch_url(self) -> Union[str, Generator[str, None, None]]:
|
|
"""Return the elasticsearch url."""
|
|
url = "http://localhost:9200"
|
|
yield url
|
|
es = Elasticsearch(hosts=url)
|
|
|
|
# Clear all indexes
|
|
index_names = es.indices.get(index="_all").keys()
|
|
for index_name in index_names:
|
|
# print(index_name)
|
|
es.indices.delete(index=index_name)
|
|
|
|
@pytest.fixture(scope="class", autouse=True)
|
|
def openai_api_key(self) -> Union[str, Generator[str, None, None]]:
|
|
"""Return the OpenAI API key."""
|
|
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
if not openai_api_key:
|
|
raise ValueError("OPENAI_API_KEY environment variable is not set")
|
|
|
|
yield openai_api_key
|
|
|
|
@pytest.fixture(scope="class")
|
|
def documents(self) -> Generator[List[Document], None, None]:
|
|
"""Return a generator that yields a list of documents."""
|
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
|
|
|
documents = TextLoader(
|
|
os.path.join(os.path.dirname(__file__), "fixtures", "sharks.txt")
|
|
).load()
|
|
yield text_splitter.split_documents(documents)
|
|
|
|
def test_similarity_search_without_metadata(self, elasticsearch_url: str) -> None:
|
|
"""Test end to end construction and search without metadata."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = ElasticVectorSearch.from_texts(
|
|
texts, FakeEmbeddings(), elasticsearch_url=elasticsearch_url
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
def test_similarity_search_with_metadata(self, elasticsearch_url: str) -> None:
|
|
"""Test end to end construction and search with metadata."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = ElasticVectorSearch.from_texts(
|
|
texts,
|
|
FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
elasticsearch_url=elasticsearch_url,
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo", metadata={"page": 0})]
|
|
|
|
def test_default_index_from_documents(
|
|
self, documents: List[Document], openai_api_key: str, elasticsearch_url: str
|
|
) -> None:
|
|
"""This test checks the construction of a default
|
|
ElasticSearch index using the 'from_documents'."""
|
|
embedding = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
|
|
|
elastic_vector_search = ElasticVectorSearch.from_documents(
|
|
documents=documents,
|
|
embedding=embedding,
|
|
elasticsearch_url=elasticsearch_url,
|
|
)
|
|
|
|
search_result = elastic_vector_search.similarity_search("sharks")
|
|
|
|
print(search_result)
|
|
assert len(search_result) != 0
|
|
|
|
def test_custom_index_from_documents(
|
|
self, documents: List[Document], openai_api_key: str, elasticsearch_url: str
|
|
) -> None:
|
|
"""This test checks the construction of a custom
|
|
ElasticSearch index using the 'from_documents'."""
|
|
embedding = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
|
elastic_vector_search = ElasticVectorSearch.from_documents(
|
|
documents=documents,
|
|
embedding=embedding,
|
|
elasticsearch_url=elasticsearch_url,
|
|
index_name="custom_index",
|
|
)
|
|
es = Elasticsearch(hosts=elasticsearch_url)
|
|
index_names = es.indices.get(index="_all").keys()
|
|
assert "custom_index" in index_names
|
|
|
|
search_result = elastic_vector_search.similarity_search("sharks")
|
|
print(search_result)
|
|
|
|
assert len(search_result) != 0
|
|
|
|
def test_custom_index_add_documents(
|
|
self, documents: List[Document], openai_api_key: str, elasticsearch_url: str
|
|
) -> None:
|
|
"""This test checks the construction of a custom
|
|
ElasticSearch index using the 'add_documents'."""
|
|
embedding = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
|
elastic_vector_search = ElasticVectorSearch(
|
|
embedding=embedding,
|
|
elasticsearch_url=elasticsearch_url,
|
|
index_name="custom_index",
|
|
)
|
|
es = Elasticsearch(hosts=elasticsearch_url)
|
|
index_names = es.indices.get(index="_all").keys()
|
|
assert "custom_index" in index_names
|
|
|
|
elastic_vector_search.add_documents(documents)
|
|
search_result = elastic_vector_search.similarity_search("sharks")
|
|
print(search_result)
|
|
|
|
assert len(search_result) != 0
|