langchain/libs/community/langchain_community/cache.py
Naveen Tatikonda 8bbdb4f6a0
community[patch]: Add OpenSearch as semantic cache (#20254)
### Description
Use OpenSearch vector store as Semantic Cache.

### Twitter Handle
**@OpenSearchProj**

---------

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
Co-authored-by: Harish Tatikonda <harishtatikonda@Harishs-MacBook-Air.local>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-31-155.ec2.internal>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-27 00:20:24 +00:00

2158 lines
81 KiB
Python

"""
.. warning::
Beta Feature!
**Cache** provides an optional caching layer for LLMs.
Cache is useful for two reasons:
- It can save you money by reducing the number of API calls you make to the LLM
provider if you're often requesting the same completion multiple times.
- It can speed up your application by reducing the number of API calls you make
to the LLM provider.
Cache directly competes with Memory. See documentation for Pros and Cons.
**Class hierarchy:**
.. code-block::
BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache
"""
from __future__ import annotations
import hashlib
import inspect
import json
import logging
import uuid
import warnings
from abc import ABC
from datetime import timedelta
from enum import Enum
from functools import lru_cache, wraps
from typing import (
TYPE_CHECKING,
Any,
Awaitable,
Callable,
Dict,
Generator,
List,
Optional,
Sequence,
Tuple,
Type,
Union,
cast,
)
from sqlalchemy import Column, Integer, String, create_engine, delete, select
from sqlalchemy.engine import Row
from sqlalchemy.engine.base import Engine
from sqlalchemy.orm import Session
from langchain_community.vectorstores.azure_cosmos_db import (
CosmosDBSimilarityType,
CosmosDBVectorSearchType,
)
try:
from sqlalchemy.orm import declarative_base
except ImportError:
from sqlalchemy.ext.declarative import declarative_base
from langchain_core._api.deprecation import deprecated
from langchain_core.caches import RETURN_VAL_TYPE, BaseCache
from langchain_core.embeddings import Embeddings
from langchain_core.language_models.llms import LLM, aget_prompts, get_prompts
from langchain_core.load.dump import dumps
from langchain_core.load.load import loads
from langchain_core.outputs import ChatGeneration, Generation
from langchain_core.utils import get_from_env
from langchain_community.utilities.astradb import (
SetupMode,
_AstraDBCollectionEnvironment,
)
from langchain_community.vectorstores import AzureCosmosDBVectorSearch
from langchain_community.vectorstores import (
OpenSearchVectorSearch as OpenSearchVectorStore,
)
from langchain_community.vectorstores.redis import Redis as RedisVectorstore
logger = logging.getLogger(__file__)
if TYPE_CHECKING:
import momento
from astrapy.db import AstraDB, AsyncAstraDB
from cassandra.cluster import Session as CassandraSession
def _hash(_input: str) -> str:
"""Use a deterministic hashing approach."""
return hashlib.md5(_input.encode()).hexdigest()
def _dump_generations_to_json(generations: RETURN_VAL_TYPE) -> str:
"""Dump generations to json.
Args:
generations (RETURN_VAL_TYPE): A list of language model generations.
Returns:
str: Json representing a list of generations.
Warning: would not work well with arbitrary subclasses of `Generation`
"""
return json.dumps([generation.dict() for generation in generations])
def _load_generations_from_json(generations_json: str) -> RETURN_VAL_TYPE:
"""Load generations from json.
Args:
generations_json (str): A string of json representing a list of generations.
Raises:
ValueError: Could not decode json string to list of generations.
Returns:
RETURN_VAL_TYPE: A list of generations.
Warning: would not work well with arbitrary subclasses of `Generation`
"""
try:
results = json.loads(generations_json)
return [Generation(**generation_dict) for generation_dict in results]
except json.JSONDecodeError:
raise ValueError(
f"Could not decode json to list of generations: {generations_json}"
)
def _dumps_generations(generations: RETURN_VAL_TYPE) -> str:
"""
Serialization for generic RETURN_VAL_TYPE, i.e. sequence of `Generation`
Args:
generations (RETURN_VAL_TYPE): A list of language model generations.
Returns:
str: a single string representing a list of generations.
This function (+ its counterpart `_loads_generations`) rely on
the dumps/loads pair with Reviver, so are able to deal
with all subclasses of Generation.
Each item in the list can be `dumps`ed to a string,
then we make the whole list of strings into a json-dumped.
"""
return json.dumps([dumps(_item) for _item in generations])
def _loads_generations(generations_str: str) -> Union[RETURN_VAL_TYPE, None]:
"""
Deserialization of a string into a generic RETURN_VAL_TYPE
(i.e. a sequence of `Generation`).
See `_dumps_generations`, the inverse of this function.
Args:
generations_str (str): A string representing a list of generations.
Compatible with the legacy cache-blob format
Does not raise exceptions for malformed entries, just logs a warning
and returns none: the caller should be prepared for such a cache miss.
Returns:
RETURN_VAL_TYPE: A list of generations.
"""
try:
generations = [loads(_item_str) for _item_str in json.loads(generations_str)]
return generations
except (json.JSONDecodeError, TypeError):
# deferring the (soft) handling to after the legacy-format attempt
pass
try:
gen_dicts = json.loads(generations_str)
# not relying on `_load_generations_from_json` (which could disappear):
generations = [Generation(**generation_dict) for generation_dict in gen_dicts]
logger.warning(
f"Legacy 'Generation' cached blob encountered: '{generations_str}'"
)
return generations
except (json.JSONDecodeError, TypeError):
logger.warning(
f"Malformed/unparsable cached blob encountered: '{generations_str}'"
)
return None
class InMemoryCache(BaseCache):
"""Cache that stores things in memory."""
def __init__(self) -> None:
"""Initialize with empty cache."""
self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {}
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
return self._cache.get((prompt, llm_string), None)
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
self._cache[(prompt, llm_string)] = return_val
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
self._cache = {}
async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
return self.lookup(prompt, llm_string)
async def aupdate(
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
) -> None:
"""Update cache based on prompt and llm_string."""
self.update(prompt, llm_string, return_val)
async def aclear(self, **kwargs: Any) -> None:
"""Clear cache."""
self.clear()
Base = declarative_base()
class FullLLMCache(Base): # type: ignore
"""SQLite table for full LLM Cache (all generations)."""
__tablename__ = "full_llm_cache"
prompt = Column(String, primary_key=True)
llm = Column(String, primary_key=True)
idx = Column(Integer, primary_key=True)
response = Column(String)
class SQLAlchemyCache(BaseCache):
"""Cache that uses SQAlchemy as a backend."""
def __init__(self, engine: Engine, cache_schema: Type[FullLLMCache] = FullLLMCache):
"""Initialize by creating all tables."""
self.engine = engine
self.cache_schema = cache_schema
self.cache_schema.metadata.create_all(self.engine)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
stmt = (
select(self.cache_schema.response)
.where(self.cache_schema.prompt == prompt) # type: ignore
.where(self.cache_schema.llm == llm_string)
.order_by(self.cache_schema.idx)
)
with Session(self.engine) as session:
rows = session.execute(stmt).fetchall()
if rows:
try:
return [loads(row[0]) for row in rows]
except Exception:
logger.warning(
"Retrieving a cache value that could not be deserialized "
"properly. This is likely due to the cache being in an "
"older format. Please recreate your cache to avoid this "
"error."
)
# In a previous life we stored the raw text directly
# in the table, so assume it's in that format.
return [Generation(text=row[0]) for row in rows]
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update based on prompt and llm_string."""
items = [
self.cache_schema(prompt=prompt, llm=llm_string, response=dumps(gen), idx=i)
for i, gen in enumerate(return_val)
]
with Session(self.engine) as session, session.begin():
for item in items:
session.merge(item)
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
with Session(self.engine) as session:
session.query(self.cache_schema).delete()
session.commit()
class SQLiteCache(SQLAlchemyCache):
"""Cache that uses SQLite as a backend."""
def __init__(self, database_path: str = ".langchain.db"):
"""Initialize by creating the engine and all tables."""
engine = create_engine(f"sqlite:///{database_path}")
super().__init__(engine)
class UpstashRedisCache(BaseCache):
"""Cache that uses Upstash Redis as a backend."""
def __init__(self, redis_: Any, *, ttl: Optional[int] = None):
"""
Initialize an instance of UpstashRedisCache.
This method initializes an object with Upstash Redis caching capabilities.
It takes a `redis_` parameter, which should be an instance of an Upstash Redis
client class, allowing the object to interact with Upstash Redis
server for caching purposes.
Parameters:
redis_: An instance of Upstash Redis client class
(e.g., Redis) used for caching.
This allows the object to communicate with
Redis server for caching operations on.
ttl (int, optional): Time-to-live (TTL) for cached items in seconds.
If provided, it sets the time duration for how long cached
items will remain valid. If not provided, cached items will not
have an automatic expiration.
"""
try:
from upstash_redis import Redis
except ImportError:
raise ValueError(
"Could not import upstash_redis python package. "
"Please install it with `pip install upstash_redis`."
)
if not isinstance(redis_, Redis):
raise ValueError("Please pass in Upstash Redis object.")
self.redis = redis_
self.ttl = ttl
def _key(self, prompt: str, llm_string: str) -> str:
"""Compute key from prompt and llm_string"""
return _hash(prompt + llm_string)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
generations = []
# Read from a HASH
results = self.redis.hgetall(self._key(prompt, llm_string))
if results:
for _, text in results.items():
generations.append(Generation(text=text))
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"UpstashRedisCache supports caching of normal LLM generations, "
f"got {type(gen)}"
)
if isinstance(gen, ChatGeneration):
warnings.warn(
"NOTE: Generation has not been cached. UpstashRedisCache does not"
" support caching ChatModel outputs."
)
return
# Write to a HASH
key = self._key(prompt, llm_string)
mapping = {
str(idx): generation.text for idx, generation in enumerate(return_val)
}
self.redis.hset(key=key, values=mapping)
if self.ttl is not None:
self.redis.expire(key, self.ttl)
def clear(self, **kwargs: Any) -> None:
"""
Clear cache. If `asynchronous` is True, flush asynchronously.
This flushes the *whole* db.
"""
asynchronous = kwargs.get("asynchronous", False)
if asynchronous:
asynchronous = "ASYNC"
else:
asynchronous = "SYNC"
self.redis.flushdb(flush_type=asynchronous)
class _RedisCacheBase(BaseCache, ABC):
@staticmethod
def _key(prompt: str, llm_string: str) -> str:
"""Compute key from prompt and llm_string"""
return _hash(prompt + llm_string)
@staticmethod
def _ensure_generation_type(return_val: RETURN_VAL_TYPE) -> None:
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"RedisCache only supports caching of normal LLM generations, "
f"got {type(gen)}"
)
@staticmethod
def _get_generations(
results: dict[str | bytes, str | bytes],
) -> Optional[List[Generation]]:
generations = []
if results:
for _, text in results.items():
try:
generations.append(loads(cast(str, text)))
except Exception:
logger.warning(
"Retrieving a cache value that could not be deserialized "
"properly. This is likely due to the cache being in an "
"older format. Please recreate your cache to avoid this "
"error."
)
# In a previous life we stored the raw text directly
# in the table, so assume it's in that format.
generations.append(Generation(text=text))
return generations if generations else None
@staticmethod
def _configure_pipeline_for_update(
key: str, pipe: Any, return_val: RETURN_VAL_TYPE, ttl: Optional[int] = None
) -> None:
pipe.hset(
key,
mapping={
str(idx): dumps(generation) for idx, generation in enumerate(return_val)
},
)
if ttl is not None:
pipe.expire(key, ttl)
class RedisCache(_RedisCacheBase):
"""
Cache that uses Redis as a backend. Allows to use a sync `redis.Redis` client.
"""
def __init__(self, redis_: Any, *, ttl: Optional[int] = None):
"""
Initialize an instance of RedisCache.
This method initializes an object with Redis caching capabilities.
It takes a `redis_` parameter, which should be an instance of a Redis
client class (`redis.Redis`), allowing the object
to interact with a Redis server for caching purposes.
Parameters:
redis_ (Any): An instance of a Redis client class
(`redis.Redis`) to be used for caching.
This allows the object to communicate with a
Redis server for caching operations.
ttl (int, optional): Time-to-live (TTL) for cached items in seconds.
If provided, it sets the time duration for how long cached
items will remain valid. If not provided, cached items will not
have an automatic expiration.
"""
try:
from redis import Redis
except ImportError:
raise ValueError(
"Could not import `redis` python package. "
"Please install it with `pip install redis`."
)
if not isinstance(redis_, Redis):
raise ValueError("Please pass a valid `redis.Redis` client.")
self.redis = redis_
self.ttl = ttl
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
# Read from a Redis HASH
try:
results = self.redis.hgetall(self._key(prompt, llm_string))
return self._get_generations(results) # type: ignore[arg-type]
except Exception as e:
logger.error(f"Redis lookup failed: {e}")
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
self._ensure_generation_type(return_val)
key = self._key(prompt, llm_string)
try:
with self.redis.pipeline() as pipe:
self._configure_pipeline_for_update(key, pipe, return_val, self.ttl)
pipe.execute()
except Exception as e:
logger.error(f"Redis update failed: {e}")
def clear(self, **kwargs: Any) -> None:
"""Clear cache. If `asynchronous` is True, flush asynchronously."""
try:
asynchronous = kwargs.get("asynchronous", False)
self.redis.flushdb(asynchronous=asynchronous, **kwargs)
except Exception as e:
logger.error(f"Redis clear failed: {e}")
class AsyncRedisCache(_RedisCacheBase):
"""
Cache that uses Redis as a backend. Allows to use an
async `redis.asyncio.Redis` client.
"""
def __init__(self, redis_: Any, *, ttl: Optional[int] = None):
"""
Initialize an instance of AsyncRedisCache.
This method initializes an object with Redis caching capabilities.
It takes a `redis_` parameter, which should be an instance of a Redis
client class (`redis.asyncio.Redis`), allowing the object
to interact with a Redis server for caching purposes.
Parameters:
redis_ (Any): An instance of a Redis client class
(`redis.asyncio.Redis`) to be used for caching.
This allows the object to communicate with a
Redis server for caching operations.
ttl (int, optional): Time-to-live (TTL) for cached items in seconds.
If provided, it sets the time duration for how long cached
items will remain valid. If not provided, cached items will not
have an automatic expiration.
"""
try:
from redis.asyncio import Redis
except ImportError:
raise ValueError(
"Could not import `redis.asyncio` python package. "
"Please install it with `pip install redis`."
)
if not isinstance(redis_, Redis):
raise ValueError("Please pass a valid `redis.asyncio.Redis` client.")
self.redis = redis_
self.ttl = ttl
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
raise NotImplementedError(
"This async Redis cache does not implement `lookup()` method. "
"Consider using the async `alookup()` version."
)
async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string. Async version."""
try:
results = await self.redis.hgetall(self._key(prompt, llm_string))
return self._get_generations(results) # type: ignore[arg-type]
except Exception as e:
logger.error(f"Redis async lookup failed: {e}")
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
raise NotImplementedError(
"This async Redis cache does not implement `update()` method. "
"Consider using the async `aupdate()` version."
)
async def aupdate(
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
) -> None:
"""Update cache based on prompt and llm_string. Async version."""
self._ensure_generation_type(return_val)
key = self._key(prompt, llm_string)
try:
async with self.redis.pipeline() as pipe:
self._configure_pipeline_for_update(key, pipe, return_val, self.ttl)
await pipe.execute() # type: ignore[attr-defined]
except Exception as e:
logger.error(f"Redis async update failed: {e}")
def clear(self, **kwargs: Any) -> None:
"""Clear cache. If `asynchronous` is True, flush asynchronously."""
raise NotImplementedError(
"This async Redis cache does not implement `clear()` method. "
"Consider using the async `aclear()` version."
)
async def aclear(self, **kwargs: Any) -> None:
"""
Clear cache. If `asynchronous` is True, flush asynchronously.
Async version.
"""
try:
asynchronous = kwargs.get("asynchronous", False)
await self.redis.flushdb(asynchronous=asynchronous, **kwargs)
except Exception as e:
logger.error(f"Redis async clear failed: {e}")
class RedisSemanticCache(BaseCache):
"""Cache that uses Redis as a vector-store backend."""
# TODO - implement a TTL policy in Redis
DEFAULT_SCHEMA = {
"content_key": "prompt",
"text": [
{"name": "prompt"},
],
"extra": [{"name": "return_val"}, {"name": "llm_string"}],
}
def __init__(
self, redis_url: str, embedding: Embeddings, score_threshold: float = 0.2
):
"""Initialize by passing in the `init` GPTCache func
Args:
redis_url (str): URL to connect to Redis.
embedding (Embedding): Embedding provider for semantic encoding and search.
score_threshold (float, 0.2):
Example:
.. code-block:: python
from langchain_community.globals import set_llm_cache
from langchain_community.cache import RedisSemanticCache
from langchain_community.embeddings import OpenAIEmbeddings
set_llm_cache(RedisSemanticCache(
redis_url="redis://localhost:6379",
embedding=OpenAIEmbeddings()
))
"""
self._cache_dict: Dict[str, RedisVectorstore] = {}
self.redis_url = redis_url
self.embedding = embedding
self.score_threshold = score_threshold
def _index_name(self, llm_string: str) -> str:
hashed_index = _hash(llm_string)
return f"cache:{hashed_index}"
def _get_llm_cache(self, llm_string: str) -> RedisVectorstore:
index_name = self._index_name(llm_string)
# return vectorstore client for the specific llm string
if index_name in self._cache_dict:
return self._cache_dict[index_name]
# create new vectorstore client for the specific llm string
try:
self._cache_dict[index_name] = RedisVectorstore.from_existing_index(
embedding=self.embedding,
index_name=index_name,
redis_url=self.redis_url,
schema=cast(Dict, self.DEFAULT_SCHEMA),
)
except ValueError:
redis = RedisVectorstore(
embedding=self.embedding,
index_name=index_name,
redis_url=self.redis_url,
index_schema=cast(Dict, self.DEFAULT_SCHEMA),
)
_embedding = self.embedding.embed_query(text="test")
redis._create_index_if_not_exist(dim=len(_embedding))
self._cache_dict[index_name] = redis
return self._cache_dict[index_name]
def clear(self, **kwargs: Any) -> None:
"""Clear semantic cache for a given llm_string."""
index_name = self._index_name(kwargs["llm_string"])
if index_name in self._cache_dict:
self._cache_dict[index_name].drop_index(
index_name=index_name, delete_documents=True, redis_url=self.redis_url
)
del self._cache_dict[index_name]
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
llm_cache = self._get_llm_cache(llm_string)
generations: List = []
# Read from a Hash
results = llm_cache.similarity_search(
query=prompt,
k=1,
distance_threshold=self.score_threshold,
)
if results:
for document in results:
try:
generations.extend(loads(document.metadata["return_val"]))
except Exception:
logger.warning(
"Retrieving a cache value that could not be deserialized "
"properly. This is likely due to the cache being in an "
"older format. Please recreate your cache to avoid this "
"error."
)
# In a previous life we stored the raw text directly
# in the table, so assume it's in that format.
generations.extend(
_load_generations_from_json(document.metadata["return_val"])
)
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"RedisSemanticCache only supports caching of "
f"normal LLM generations, got {type(gen)}"
)
llm_cache = self._get_llm_cache(llm_string)
metadata = {
"llm_string": llm_string,
"prompt": prompt,
"return_val": dumps([g for g in return_val]),
}
llm_cache.add_texts(texts=[prompt], metadatas=[metadata])
class GPTCache(BaseCache):
"""Cache that uses GPTCache as a backend."""
def __init__(
self,
init_func: Union[
Callable[[Any, str], None], Callable[[Any], None], None
] = None,
):
"""Initialize by passing in init function (default: `None`).
Args:
init_func (Optional[Callable[[Any], None]]): init `GPTCache` function
(default: `None`)
Example:
.. code-block:: python
# Initialize GPTCache with a custom init function
import gptcache
from gptcache.processor.pre import get_prompt
from gptcache.manager.factory import get_data_manager
from langchain_community.globals import set_llm_cache
# Avoid multiple caches using the same file,
causing different llm model caches to affect each other
def init_gptcache(cache_obj: gptcache.Cache, llm str):
cache_obj.init(
pre_embedding_func=get_prompt,
data_manager=manager_factory(
manager="map",
data_dir=f"map_cache_{llm}"
),
)
set_llm_cache(GPTCache(init_gptcache))
"""
try:
import gptcache # noqa: F401
except ImportError:
raise ImportError(
"Could not import gptcache python package. "
"Please install it with `pip install gptcache`."
)
self.init_gptcache_func: Union[
Callable[[Any, str], None], Callable[[Any], None], None
] = init_func
self.gptcache_dict: Dict[str, Any] = {}
def _new_gptcache(self, llm_string: str) -> Any:
"""New gptcache object"""
from gptcache import Cache
from gptcache.manager.factory import get_data_manager
from gptcache.processor.pre import get_prompt
_gptcache = Cache()
if self.init_gptcache_func is not None:
sig = inspect.signature(self.init_gptcache_func)
if len(sig.parameters) == 2:
self.init_gptcache_func(_gptcache, llm_string) # type: ignore[call-arg]
else:
self.init_gptcache_func(_gptcache) # type: ignore[call-arg]
else:
_gptcache.init(
pre_embedding_func=get_prompt,
data_manager=get_data_manager(data_path=llm_string),
)
self.gptcache_dict[llm_string] = _gptcache
return _gptcache
def _get_gptcache(self, llm_string: str) -> Any:
"""Get a cache object.
When the corresponding llm model cache does not exist, it will be created."""
_gptcache = self.gptcache_dict.get(llm_string, None)
if not _gptcache:
_gptcache = self._new_gptcache(llm_string)
return _gptcache
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up the cache data.
First, retrieve the corresponding cache object using the `llm_string` parameter,
and then retrieve the data from the cache based on the `prompt`.
"""
from gptcache.adapter.api import get
_gptcache = self._get_gptcache(llm_string)
res = get(prompt, cache_obj=_gptcache)
return _loads_generations(res) if res is not None else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache.
First, retrieve the corresponding cache object using the `llm_string` parameter,
and then store the `prompt` and `return_val` in the cache object.
"""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"GPTCache only supports caching of normal LLM generations, "
f"got {type(gen)}"
)
from gptcache.adapter.api import put
_gptcache = self._get_gptcache(llm_string)
handled_data = _dumps_generations(return_val)
put(prompt, handled_data, cache_obj=_gptcache)
return None
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
from gptcache import Cache
for gptcache_instance in self.gptcache_dict.values():
gptcache_instance = cast(Cache, gptcache_instance)
gptcache_instance.flush()
self.gptcache_dict.clear()
def _ensure_cache_exists(cache_client: momento.CacheClient, cache_name: str) -> None:
"""Create cache if it doesn't exist.
Raises:
SdkException: Momento service or network error
Exception: Unexpected response
"""
from momento.responses import CreateCache
create_cache_response = cache_client.create_cache(cache_name)
if isinstance(create_cache_response, CreateCache.Success) or isinstance(
create_cache_response, CreateCache.CacheAlreadyExists
):
return None
elif isinstance(create_cache_response, CreateCache.Error):
raise create_cache_response.inner_exception
else:
raise Exception(f"Unexpected response cache creation: {create_cache_response}")
def _validate_ttl(ttl: Optional[timedelta]) -> None:
if ttl is not None and ttl <= timedelta(seconds=0):
raise ValueError(f"ttl must be positive but was {ttl}.")
class MomentoCache(BaseCache):
"""Cache that uses Momento as a backend. See https://gomomento.com/"""
def __init__(
self,
cache_client: momento.CacheClient,
cache_name: str,
*,
ttl: Optional[timedelta] = None,
ensure_cache_exists: bool = True,
):
"""Instantiate a prompt cache using Momento as a backend.
Note: to instantiate the cache client passed to MomentoCache,
you must have a Momento account. See https://gomomento.com/.
Args:
cache_client (CacheClient): The Momento cache client.
cache_name (str): The name of the cache to use to store the data.
ttl (Optional[timedelta], optional): The time to live for the cache items.
Defaults to None, ie use the client default TTL.
ensure_cache_exists (bool, optional): Create the cache if it doesn't
exist. Defaults to True.
Raises:
ImportError: Momento python package is not installed.
TypeError: cache_client is not of type momento.CacheClientObject
ValueError: ttl is non-null and non-negative
"""
try:
from momento import CacheClient
except ImportError:
raise ImportError(
"Could not import momento python package. "
"Please install it with `pip install momento`."
)
if not isinstance(cache_client, CacheClient):
raise TypeError("cache_client must be a momento.CacheClient object.")
_validate_ttl(ttl)
if ensure_cache_exists:
_ensure_cache_exists(cache_client, cache_name)
self.cache_client = cache_client
self.cache_name = cache_name
self.ttl = ttl
@classmethod
def from_client_params(
cls,
cache_name: str,
ttl: timedelta,
*,
configuration: Optional[momento.config.Configuration] = None,
api_key: Optional[str] = None,
auth_token: Optional[str] = None, # for backwards compatibility
**kwargs: Any,
) -> MomentoCache:
"""Construct cache from CacheClient parameters."""
try:
from momento import CacheClient, Configurations, CredentialProvider
except ImportError:
raise ImportError(
"Could not import momento python package. "
"Please install it with `pip install momento`."
)
if configuration is None:
configuration = Configurations.Laptop.v1()
# Try checking `MOMENTO_AUTH_TOKEN` first for backwards compatibility
try:
api_key = auth_token or get_from_env("auth_token", "MOMENTO_AUTH_TOKEN")
except ValueError:
api_key = api_key or get_from_env("api_key", "MOMENTO_API_KEY")
credentials = CredentialProvider.from_string(api_key)
cache_client = CacheClient(configuration, credentials, default_ttl=ttl)
return cls(cache_client, cache_name, ttl=ttl, **kwargs)
def __key(self, prompt: str, llm_string: str) -> str:
"""Compute cache key from prompt and associated model and settings.
Args:
prompt (str): The prompt run through the language model.
llm_string (str): The language model version and settings.
Returns:
str: The cache key.
"""
return _hash(prompt + llm_string)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Lookup llm generations in cache by prompt and associated model and settings.
Args:
prompt (str): The prompt run through the language model.
llm_string (str): The language model version and settings.
Raises:
SdkException: Momento service or network error
Returns:
Optional[RETURN_VAL_TYPE]: A list of language model generations.
"""
from momento.responses import CacheGet
generations: RETURN_VAL_TYPE = []
get_response = self.cache_client.get(
self.cache_name, self.__key(prompt, llm_string)
)
if isinstance(get_response, CacheGet.Hit):
value = get_response.value_string
generations = _load_generations_from_json(value)
elif isinstance(get_response, CacheGet.Miss):
pass
elif isinstance(get_response, CacheGet.Error):
raise get_response.inner_exception
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Store llm generations in cache.
Args:
prompt (str): The prompt run through the language model.
llm_string (str): The language model string.
return_val (RETURN_VAL_TYPE): A list of language model generations.
Raises:
SdkException: Momento service or network error
Exception: Unexpected response
"""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"Momento only supports caching of normal LLM generations, "
f"got {type(gen)}"
)
key = self.__key(prompt, llm_string)
value = _dump_generations_to_json(return_val)
set_response = self.cache_client.set(self.cache_name, key, value, self.ttl)
from momento.responses import CacheSet
if isinstance(set_response, CacheSet.Success):
pass
elif isinstance(set_response, CacheSet.Error):
raise set_response.inner_exception
else:
raise Exception(f"Unexpected response: {set_response}")
def clear(self, **kwargs: Any) -> None:
"""Clear the cache.
Raises:
SdkException: Momento service or network error
"""
from momento.responses import CacheFlush
flush_response = self.cache_client.flush_cache(self.cache_name)
if isinstance(flush_response, CacheFlush.Success):
pass
elif isinstance(flush_response, CacheFlush.Error):
raise flush_response.inner_exception
CASSANDRA_CACHE_DEFAULT_TABLE_NAME = "langchain_llm_cache"
CASSANDRA_CACHE_DEFAULT_TTL_SECONDS = None
class CassandraCache(BaseCache):
"""
Cache that uses Cassandra / Astra DB as a backend.
It uses a single Cassandra table.
The lookup keys (which get to form the primary key) are:
- prompt, a string
- llm_string, a deterministic str representation of the model parameters.
(needed to prevent collisions same-prompt-different-model collisions)
"""
def __init__(
self,
session: Optional[CassandraSession] = None,
keyspace: Optional[str] = None,
table_name: str = CASSANDRA_CACHE_DEFAULT_TABLE_NAME,
ttl_seconds: Optional[int] = CASSANDRA_CACHE_DEFAULT_TTL_SECONDS,
skip_provisioning: bool = False,
):
"""
Initialize with a ready session and a keyspace name.
Args:
session (cassandra.cluster.Session): an open Cassandra session
keyspace (str): the keyspace to use for storing the cache
table_name (str): name of the Cassandra table to use as cache
ttl_seconds (optional int): time-to-live for cache entries
(default: None, i.e. forever)
"""
try:
from cassio.table import ElasticCassandraTable
except (ImportError, ModuleNotFoundError):
raise ValueError(
"Could not import cassio python package. "
"Please install it with `pip install cassio`."
)
self.session = session
self.keyspace = keyspace
self.table_name = table_name
self.ttl_seconds = ttl_seconds
self.kv_cache = ElasticCassandraTable(
session=self.session,
keyspace=self.keyspace,
table=self.table_name,
keys=["llm_string", "prompt"],
primary_key_type=["TEXT", "TEXT"],
ttl_seconds=self.ttl_seconds,
skip_provisioning=skip_provisioning,
)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
item = self.kv_cache.get(
llm_string=_hash(llm_string),
prompt=_hash(prompt),
)
if item is not None:
generations = _loads_generations(item["body_blob"])
# this protects against malformed cached items:
if generations is not None:
return generations
else:
return None
else:
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
blob = _dumps_generations(return_val)
self.kv_cache.put(
llm_string=_hash(llm_string),
prompt=_hash(prompt),
body_blob=blob,
)
def delete_through_llm(
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
) -> None:
"""
A wrapper around `delete` with the LLM being passed.
In case the llm.invoke(prompt) calls have a `stop` param, you should
pass it here
"""
llm_string = get_prompts(
{**llm.dict(), **{"stop": stop}},
[],
)[1]
return self.delete(prompt, llm_string=llm_string)
def delete(self, prompt: str, llm_string: str) -> None:
"""Evict from cache if there's an entry."""
return self.kv_cache.delete(
llm_string=_hash(llm_string),
prompt=_hash(prompt),
)
def clear(self, **kwargs: Any) -> None:
"""Clear cache. This is for all LLMs at once."""
self.kv_cache.clear()
CASSANDRA_SEMANTIC_CACHE_DEFAULT_DISTANCE_METRIC = "dot"
CASSANDRA_SEMANTIC_CACHE_DEFAULT_SCORE_THRESHOLD = 0.85
CASSANDRA_SEMANTIC_CACHE_DEFAULT_TABLE_NAME = "langchain_llm_semantic_cache"
CASSANDRA_SEMANTIC_CACHE_DEFAULT_TTL_SECONDS = None
CASSANDRA_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE = 16
class CassandraSemanticCache(BaseCache):
"""
Cache that uses Cassandra as a vector-store backend for semantic
(i.e. similarity-based) lookup.
It uses a single (vector) Cassandra table and stores, in principle,
cached values from several LLMs, so the LLM's llm_string is part
of the rows' primary keys.
The similarity is based on one of several distance metrics (default: "dot").
If choosing another metric, the default threshold is to be re-tuned accordingly.
"""
def __init__(
self,
session: Optional[CassandraSession],
keyspace: Optional[str],
embedding: Embeddings,
table_name: str = CASSANDRA_SEMANTIC_CACHE_DEFAULT_TABLE_NAME,
distance_metric: str = CASSANDRA_SEMANTIC_CACHE_DEFAULT_DISTANCE_METRIC,
score_threshold: float = CASSANDRA_SEMANTIC_CACHE_DEFAULT_SCORE_THRESHOLD,
ttl_seconds: Optional[int] = CASSANDRA_SEMANTIC_CACHE_DEFAULT_TTL_SECONDS,
skip_provisioning: bool = False,
):
"""
Initialize the cache with all relevant parameters.
Args:
session (cassandra.cluster.Session): an open Cassandra session
keyspace (str): the keyspace to use for storing the cache
embedding (Embedding): Embedding provider for semantic
encoding and search.
table_name (str): name of the Cassandra (vector) table
to use as cache
distance_metric (str, 'dot'): which measure to adopt for
similarity searches
score_threshold (optional float): numeric value to use as
cutoff for the similarity searches
ttl_seconds (optional int): time-to-live for cache entries
(default: None, i.e. forever)
The default score threshold is tuned to the default metric.
Tune it carefully yourself if switching to another distance metric.
"""
try:
from cassio.table import MetadataVectorCassandraTable
except (ImportError, ModuleNotFoundError):
raise ValueError(
"Could not import cassio python package. "
"Please install it with `pip install cassio`."
)
self.session = session
self.keyspace = keyspace
self.embedding = embedding
self.table_name = table_name
self.distance_metric = distance_metric
self.score_threshold = score_threshold
self.ttl_seconds = ttl_seconds
# The contract for this class has separate lookup and update:
# in order to spare some embedding calculations we cache them between
# the two calls.
# Note: each instance of this class has its own `_get_embedding` with
# its own lru.
@lru_cache(maxsize=CASSANDRA_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE)
def _cache_embedding(text: str) -> List[float]:
return self.embedding.embed_query(text=text)
self._get_embedding = _cache_embedding
self.embedding_dimension = self._get_embedding_dimension()
self.table = MetadataVectorCassandraTable(
session=self.session,
keyspace=self.keyspace,
table=self.table_name,
primary_key_type=["TEXT"],
vector_dimension=self.embedding_dimension,
ttl_seconds=self.ttl_seconds,
metadata_indexing=("allow", {"_llm_string_hash"}),
skip_provisioning=skip_provisioning,
)
def _get_embedding_dimension(self) -> int:
return len(self._get_embedding(text="This is a sample sentence."))
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
embedding_vector = self._get_embedding(text=prompt)
llm_string_hash = _hash(llm_string)
body = _dumps_generations(return_val)
metadata = {
"_prompt": prompt,
"_llm_string_hash": llm_string_hash,
}
row_id = f"{_hash(prompt)}-{llm_string_hash}"
#
self.table.put(
body_blob=body,
vector=embedding_vector,
row_id=row_id,
metadata=metadata,
)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
hit_with_id = self.lookup_with_id(prompt, llm_string)
if hit_with_id is not None:
return hit_with_id[1]
else:
return None
def lookup_with_id(
self, prompt: str, llm_string: str
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
"""
Look up based on prompt and llm_string.
If there are hits, return (document_id, cached_entry)
"""
prompt_embedding: List[float] = self._get_embedding(text=prompt)
hits = list(
self.table.metric_ann_search(
vector=prompt_embedding,
metadata={"_llm_string_hash": _hash(llm_string)},
n=1,
metric=self.distance_metric,
metric_threshold=self.score_threshold,
)
)
if hits:
hit = hits[0]
generations = _loads_generations(hit["body_blob"])
if generations is not None:
# this protects against malformed cached items:
return (
hit["row_id"],
generations,
)
else:
return None
else:
return None
def lookup_with_id_through_llm(
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
llm_string = get_prompts(
{**llm.dict(), **{"stop": stop}},
[],
)[1]
return self.lookup_with_id(prompt, llm_string=llm_string)
def delete_by_document_id(self, document_id: str) -> None:
"""
Given this is a "similarity search" cache, an invalidation pattern
that makes sense is first a lookup to get an ID, and then deleting
with that ID. This is for the second step.
"""
self.table.delete(row_id=document_id)
def clear(self, **kwargs: Any) -> None:
"""Clear the *whole* semantic cache."""
self.table.clear()
class FullMd5LLMCache(Base): # type: ignore
"""SQLite table for full LLM Cache (all generations)."""
__tablename__ = "full_md5_llm_cache"
id = Column(String, primary_key=True)
prompt_md5 = Column(String, index=True)
llm = Column(String, index=True)
idx = Column(Integer, index=True)
prompt = Column(String)
response = Column(String)
class SQLAlchemyMd5Cache(BaseCache):
"""Cache that uses SQAlchemy as a backend."""
def __init__(
self, engine: Engine, cache_schema: Type[FullMd5LLMCache] = FullMd5LLMCache
):
"""Initialize by creating all tables."""
self.engine = engine
self.cache_schema = cache_schema
self.cache_schema.metadata.create_all(self.engine)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
rows = self._search_rows(prompt, llm_string)
if rows:
return [loads(row[0]) for row in rows]
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update based on prompt and llm_string."""
with Session(self.engine) as session, session.begin():
self._delete_previous(session, prompt, llm_string)
prompt_md5 = self.get_md5(prompt)
items = [
self.cache_schema(
id=str(uuid.uuid1()),
prompt=prompt,
prompt_md5=prompt_md5,
llm=llm_string,
response=dumps(gen),
idx=i,
)
for i, gen in enumerate(return_val)
]
for item in items:
session.merge(item)
def _delete_previous(self, session: Session, prompt: str, llm_string: str) -> None:
stmt = (
delete(self.cache_schema)
.where(self.cache_schema.prompt_md5 == self.get_md5(prompt)) # type: ignore
.where(self.cache_schema.llm == llm_string)
.where(self.cache_schema.prompt == prompt)
)
session.execute(stmt)
def _search_rows(self, prompt: str, llm_string: str) -> Sequence[Row]:
prompt_pd5 = self.get_md5(prompt)
stmt = (
select(self.cache_schema.response)
.where(self.cache_schema.prompt_md5 == prompt_pd5) # type: ignore
.where(self.cache_schema.llm == llm_string)
.where(self.cache_schema.prompt == prompt)
.order_by(self.cache_schema.idx)
)
with Session(self.engine) as session:
return session.execute(stmt).fetchall()
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
with Session(self.engine) as session:
session.execute(self.cache_schema.delete())
@staticmethod
def get_md5(input_string: str) -> str:
return hashlib.md5(input_string.encode()).hexdigest()
ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME = "langchain_astradb_cache"
@deprecated(
since="0.0.28",
removal="0.2.0",
alternative_import="langchain_astradb.AstraDBCache",
)
class AstraDBCache(BaseCache):
@staticmethod
def _make_id(prompt: str, llm_string: str) -> str:
return f"{_hash(prompt)}#{_hash(llm_string)}"
def __init__(
self,
*,
collection_name: str = ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME,
token: Optional[str] = None,
api_endpoint: Optional[str] = None,
astra_db_client: Optional[AstraDB] = None,
async_astra_db_client: Optional[AsyncAstraDB] = None,
namespace: Optional[str] = None,
pre_delete_collection: bool = False,
setup_mode: SetupMode = SetupMode.SYNC,
):
"""
Cache that uses Astra DB as a backend.
It uses a single collection as a kv store
The lookup keys, combined in the _id of the documents, are:
- prompt, a string
- llm_string, a deterministic str representation of the model parameters.
(needed to prevent same-prompt-different-model collisions)
Args:
collection_name: name of the Astra DB collection to create/use.
token: API token for Astra DB usage.
api_endpoint: full URL to the API endpoint,
such as `https://<DB-ID>-us-east1.apps.astra.datastax.com`.
astra_db_client: *alternative to token+api_endpoint*,
you can pass an already-created 'astrapy.db.AstraDB' instance.
async_astra_db_client: *alternative to token+api_endpoint*,
you can pass an already-created 'astrapy.db.AsyncAstraDB' instance.
namespace: namespace (aka keyspace) where the
collection is created. Defaults to the database's "default namespace".
setup_mode: mode used to create the Astra DB collection (SYNC, ASYNC or
OFF).
pre_delete_collection: whether to delete the collection
before creating it. If False and the collection already exists,
the collection will be used as is.
"""
self.astra_env = _AstraDBCollectionEnvironment(
collection_name=collection_name,
token=token,
api_endpoint=api_endpoint,
astra_db_client=astra_db_client,
async_astra_db_client=async_astra_db_client,
namespace=namespace,
setup_mode=setup_mode,
pre_delete_collection=pre_delete_collection,
)
self.collection = self.astra_env.collection
self.async_collection = self.astra_env.async_collection
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
self.astra_env.ensure_db_setup()
doc_id = self._make_id(prompt, llm_string)
item = self.collection.find_one(
filter={
"_id": doc_id,
},
projection={
"body_blob": 1,
},
)["data"]["document"]
return _loads_generations(item["body_blob"]) if item is not None else None
async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
await self.astra_env.aensure_db_setup()
doc_id = self._make_id(prompt, llm_string)
item = (
await self.async_collection.find_one(
filter={
"_id": doc_id,
},
projection={
"body_blob": 1,
},
)
)["data"]["document"]
return _loads_generations(item["body_blob"]) if item is not None else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
self.astra_env.ensure_db_setup()
doc_id = self._make_id(prompt, llm_string)
blob = _dumps_generations(return_val)
self.collection.upsert(
{
"_id": doc_id,
"body_blob": blob,
},
)
async def aupdate(
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
) -> None:
await self.astra_env.aensure_db_setup()
doc_id = self._make_id(prompt, llm_string)
blob = _dumps_generations(return_val)
await self.async_collection.upsert(
{
"_id": doc_id,
"body_blob": blob,
},
)
def delete_through_llm(
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
) -> None:
"""
A wrapper around `delete` with the LLM being passed.
In case the llm.invoke(prompt) calls have a `stop` param, you should
pass it here
"""
llm_string = get_prompts(
{**llm.dict(), **{"stop": stop}},
[],
)[1]
return self.delete(prompt, llm_string=llm_string)
async def adelete_through_llm(
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
) -> None:
"""
A wrapper around `adelete` with the LLM being passed.
In case the llm.invoke(prompt) calls have a `stop` param, you should
pass it here
"""
llm_string = (
await aget_prompts(
{**llm.dict(), **{"stop": stop}},
[],
)
)[1]
return await self.adelete(prompt, llm_string=llm_string)
def delete(self, prompt: str, llm_string: str) -> None:
"""Evict from cache if there's an entry."""
self.astra_env.ensure_db_setup()
doc_id = self._make_id(prompt, llm_string)
self.collection.delete_one(doc_id)
async def adelete(self, prompt: str, llm_string: str) -> None:
"""Evict from cache if there's an entry."""
await self.astra_env.aensure_db_setup()
doc_id = self._make_id(prompt, llm_string)
await self.async_collection.delete_one(doc_id)
def clear(self, **kwargs: Any) -> None:
self.astra_env.ensure_db_setup()
self.collection.clear()
async def aclear(self, **kwargs: Any) -> None:
await self.astra_env.aensure_db_setup()
await self.async_collection.clear()
ASTRA_DB_SEMANTIC_CACHE_DEFAULT_THRESHOLD = 0.85
ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME = "langchain_astradb_semantic_cache"
ASTRA_DB_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE = 16
_unset = ["unset"]
class _CachedAwaitable:
"""Caches the result of an awaitable so it can be awaited multiple times"""
def __init__(self, awaitable: Awaitable[Any]):
self.awaitable = awaitable
self.result = _unset
def __await__(self) -> Generator:
if self.result is _unset:
self.result = yield from self.awaitable.__await__()
return self.result
def _reawaitable(func: Callable) -> Callable:
"""Makes an async function result awaitable multiple times"""
@wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> _CachedAwaitable:
return _CachedAwaitable(func(*args, **kwargs))
return wrapper
def _async_lru_cache(maxsize: int = 128, typed: bool = False) -> Callable:
"""Least-recently-used async cache decorator.
Equivalent to functools.lru_cache for async functions"""
def decorating_function(user_function: Callable) -> Callable:
return lru_cache(maxsize, typed)(_reawaitable(user_function))
return decorating_function
@deprecated(
since="0.0.28",
removal="0.2.0",
alternative_import="langchain_astradb.AstraDBSemanticCache",
)
class AstraDBSemanticCache(BaseCache):
def __init__(
self,
*,
collection_name: str = ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME,
token: Optional[str] = None,
api_endpoint: Optional[str] = None,
astra_db_client: Optional[AstraDB] = None,
async_astra_db_client: Optional[AsyncAstraDB] = None,
namespace: Optional[str] = None,
setup_mode: SetupMode = SetupMode.SYNC,
pre_delete_collection: bool = False,
embedding: Embeddings,
metric: Optional[str] = None,
similarity_threshold: float = ASTRA_DB_SEMANTIC_CACHE_DEFAULT_THRESHOLD,
):
"""
Cache that uses Astra DB as a vector-store backend for semantic
(i.e. similarity-based) lookup.
It uses a single (vector) collection and can store
cached values from several LLMs, so the LLM's 'llm_string' is stored
in the document metadata.
You can choose the preferred similarity (or use the API default).
The default score threshold is tuned to the default metric.
Tune it carefully yourself if switching to another distance metric.
Args:
collection_name: name of the Astra DB collection to create/use.
token: API token for Astra DB usage.
api_endpoint: full URL to the API endpoint,
such as `https://<DB-ID>-us-east1.apps.astra.datastax.com`.
astra_db_client: *alternative to token+api_endpoint*,
you can pass an already-created 'astrapy.db.AstraDB' instance.
async_astra_db_client: *alternative to token+api_endpoint*,
you can pass an already-created 'astrapy.db.AsyncAstraDB' instance.
namespace: namespace (aka keyspace) where the
collection is created. Defaults to the database's "default namespace".
setup_mode: mode used to create the Astra DB collection (SYNC, ASYNC or
OFF).
pre_delete_collection: whether to delete the collection
before creating it. If False and the collection already exists,
the collection will be used as is.
embedding: Embedding provider for semantic encoding and search.
metric: the function to use for evaluating similarity of text embeddings.
Defaults to 'cosine' (alternatives: 'euclidean', 'dot_product')
similarity_threshold: the minimum similarity for accepting a
(semantic-search) match.
"""
self.embedding = embedding
self.metric = metric
self.similarity_threshold = similarity_threshold
self.collection_name = collection_name
# The contract for this class has separate lookup and update:
# in order to spare some embedding calculations we cache them between
# the two calls.
# Note: each instance of this class has its own `_get_embedding` with
# its own lru.
@lru_cache(maxsize=ASTRA_DB_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE)
def _cache_embedding(text: str) -> List[float]:
return self.embedding.embed_query(text=text)
self._get_embedding = _cache_embedding
@_async_lru_cache(maxsize=ASTRA_DB_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE)
async def _acache_embedding(text: str) -> List[float]:
return await self.embedding.aembed_query(text=text)
self._aget_embedding = _acache_embedding
embedding_dimension: Union[int, Awaitable[int], None] = None
if setup_mode == SetupMode.ASYNC:
embedding_dimension = self._aget_embedding_dimension()
elif setup_mode == SetupMode.SYNC:
embedding_dimension = self._get_embedding_dimension()
self.astra_env = _AstraDBCollectionEnvironment(
collection_name=collection_name,
token=token,
api_endpoint=api_endpoint,
astra_db_client=astra_db_client,
async_astra_db_client=async_astra_db_client,
namespace=namespace,
setup_mode=setup_mode,
pre_delete_collection=pre_delete_collection,
embedding_dimension=embedding_dimension,
metric=metric,
)
self.collection = self.astra_env.collection
self.async_collection = self.astra_env.async_collection
def _get_embedding_dimension(self) -> int:
return len(self._get_embedding(text="This is a sample sentence."))
async def _aget_embedding_dimension(self) -> int:
return len(await self._aget_embedding(text="This is a sample sentence."))
@staticmethod
def _make_id(prompt: str, llm_string: str) -> str:
return f"{_hash(prompt)}#{_hash(llm_string)}"
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
self.astra_env.ensure_db_setup()
doc_id = self._make_id(prompt, llm_string)
llm_string_hash = _hash(llm_string)
embedding_vector = self._get_embedding(text=prompt)
body = _dumps_generations(return_val)
#
self.collection.upsert(
{
"_id": doc_id,
"body_blob": body,
"llm_string_hash": llm_string_hash,
"$vector": embedding_vector,
}
)
async def aupdate(
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
) -> None:
await self.astra_env.aensure_db_setup()
doc_id = self._make_id(prompt, llm_string)
llm_string_hash = _hash(llm_string)
embedding_vector = await self._aget_embedding(text=prompt)
body = _dumps_generations(return_val)
#
await self.async_collection.upsert(
{
"_id": doc_id,
"body_blob": body,
"llm_string_hash": llm_string_hash,
"$vector": embedding_vector,
}
)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
hit_with_id = self.lookup_with_id(prompt, llm_string)
if hit_with_id is not None:
return hit_with_id[1]
else:
return None
async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
hit_with_id = await self.alookup_with_id(prompt, llm_string)
if hit_with_id is not None:
return hit_with_id[1]
else:
return None
def lookup_with_id(
self, prompt: str, llm_string: str
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
"""
Look up based on prompt and llm_string.
If there are hits, return (document_id, cached_entry) for the top hit
"""
self.astra_env.ensure_db_setup()
prompt_embedding: List[float] = self._get_embedding(text=prompt)
llm_string_hash = _hash(llm_string)
hit = self.collection.vector_find_one(
vector=prompt_embedding,
filter={
"llm_string_hash": llm_string_hash,
},
fields=["body_blob", "_id"],
include_similarity=True,
)
if hit is None or hit["$similarity"] < self.similarity_threshold:
return None
else:
generations = _loads_generations(hit["body_blob"])
if generations is not None:
# this protects against malformed cached items:
return hit["_id"], generations
else:
return None
async def alookup_with_id(
self, prompt: str, llm_string: str
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
"""
Look up based on prompt and llm_string.
If there are hits, return (document_id, cached_entry) for the top hit
"""
await self.astra_env.aensure_db_setup()
prompt_embedding: List[float] = await self._aget_embedding(text=prompt)
llm_string_hash = _hash(llm_string)
hit = await self.async_collection.vector_find_one(
vector=prompt_embedding,
filter={
"llm_string_hash": llm_string_hash,
},
fields=["body_blob", "_id"],
include_similarity=True,
)
if hit is None or hit["$similarity"] < self.similarity_threshold:
return None
else:
generations = _loads_generations(hit["body_blob"])
if generations is not None:
# this protects against malformed cached items:
return hit["_id"], generations
else:
return None
def lookup_with_id_through_llm(
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
llm_string = get_prompts(
{**llm.dict(), **{"stop": stop}},
[],
)[1]
return self.lookup_with_id(prompt, llm_string=llm_string)
async def alookup_with_id_through_llm(
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
llm_string = (
await aget_prompts(
{**llm.dict(), **{"stop": stop}},
[],
)
)[1]
return await self.alookup_with_id(prompt, llm_string=llm_string)
def delete_by_document_id(self, document_id: str) -> None:
"""
Given this is a "similarity search" cache, an invalidation pattern
that makes sense is first a lookup to get an ID, and then deleting
with that ID. This is for the second step.
"""
self.astra_env.ensure_db_setup()
self.collection.delete_one(document_id)
async def adelete_by_document_id(self, document_id: str) -> None:
"""
Given this is a "similarity search" cache, an invalidation pattern
that makes sense is first a lookup to get an ID, and then deleting
with that ID. This is for the second step.
"""
await self.astra_env.aensure_db_setup()
await self.async_collection.delete_one(document_id)
def clear(self, **kwargs: Any) -> None:
self.astra_env.ensure_db_setup()
self.collection.clear()
async def aclear(self, **kwargs: Any) -> None:
await self.astra_env.aensure_db_setup()
await self.async_collection.clear()
class AzureCosmosDBSemanticCache(BaseCache):
"""Cache that uses Cosmos DB Mongo vCore vector-store backend"""
DEFAULT_DATABASE_NAME = "CosmosMongoVCoreCacheDB"
DEFAULT_COLLECTION_NAME = "CosmosMongoVCoreCacheColl"
def __init__(
self,
cosmosdb_connection_string: str,
database_name: str,
collection_name: str,
embedding: Embeddings,
*,
cosmosdb_client: Optional[Any] = None,
num_lists: int = 100,
similarity: CosmosDBSimilarityType = CosmosDBSimilarityType.COS,
kind: CosmosDBVectorSearchType = CosmosDBVectorSearchType.VECTOR_IVF,
dimensions: int = 1536,
m: int = 16,
ef_construction: int = 64,
ef_search: int = 40,
score_threshold: Optional[float] = None,
application_name: str = "LANGCHAIN_CACHING_PYTHON",
):
"""
Args:
cosmosdb_connection_string: Cosmos DB Mongo vCore connection string
cosmosdb_client: Cosmos DB Mongo vCore client
embedding (Embedding): Embedding provider for semantic encoding and search.
database_name: Database name for the CosmosDBMongoVCoreSemanticCache
collection_name: Collection name for the CosmosDBMongoVCoreSemanticCache
num_lists: This integer is the number of clusters that the
inverted file (IVF) index uses to group the vector data.
We recommend that numLists is set to documentCount/1000
for up to 1 million documents and to sqrt(documentCount)
for more than 1 million documents.
Using a numLists value of 1 is akin to performing
brute-force search, which has limited performance
dimensions: Number of dimensions for vector similarity.
The maximum number of supported dimensions is 2000
similarity: Similarity metric to use with the IVF index.
Possible options are:
- CosmosDBSimilarityType.COS (cosine distance),
- CosmosDBSimilarityType.L2 (Euclidean distance), and
- CosmosDBSimilarityType.IP (inner product).
kind: Type of vector index to create.
Possible options are:
- vector-ivf
- vector-hnsw: available as a preview feature only,
to enable visit https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/preview-features
m: The max number of connections per layer (16 by default, minimum
value is 2, maximum value is 100). Higher m is suitable for datasets
with high dimensionality and/or high accuracy requirements.
ef_construction: the size of the dynamic candidate list for constructing
the graph (64 by default, minimum value is 4, maximum
value is 1000). Higher ef_construction will result in
better index quality and higher accuracy, but it will
also increase the time required to build the index.
ef_construction has to be at least 2 * m
ef_search: The size of the dynamic candidate list for search
(40 by default). A higher value provides better
recall at the cost of speed.
score_threshold: Maximum score used to filter the vector search documents.
application_name: Application name for the client for tracking and logging
"""
self._validate_enum_value(similarity, CosmosDBSimilarityType)
self._validate_enum_value(kind, CosmosDBVectorSearchType)
if not cosmosdb_connection_string:
raise ValueError(" CosmosDB connection string can be empty.")
self.cosmosdb_connection_string = cosmosdb_connection_string
self.cosmosdb_client = cosmosdb_client
self.embedding = embedding
self.database_name = database_name or self.DEFAULT_DATABASE_NAME
self.collection_name = collection_name or self.DEFAULT_COLLECTION_NAME
self.num_lists = num_lists
self.dimensions = dimensions
self.similarity = similarity
self.kind = kind
self.m = m
self.ef_construction = ef_construction
self.ef_search = ef_search
self.score_threshold = score_threshold
self._cache_dict: Dict[str, AzureCosmosDBVectorSearch] = {}
self.application_name = application_name
def _index_name(self, llm_string: str) -> str:
hashed_index = _hash(llm_string)
return f"cache:{hashed_index}"
def _get_llm_cache(self, llm_string: str) -> AzureCosmosDBVectorSearch:
index_name = self._index_name(llm_string)
namespace = self.database_name + "." + self.collection_name
# return vectorstore client for the specific llm string
if index_name in self._cache_dict:
return self._cache_dict[index_name]
# create new vectorstore client for the specific llm string
if self.cosmosdb_client:
collection = self.cosmosdb_client[self.database_name][self.collection_name]
self._cache_dict[index_name] = AzureCosmosDBVectorSearch(
collection=collection,
embedding=self.embedding,
index_name=index_name,
)
else:
self._cache_dict[
index_name
] = AzureCosmosDBVectorSearch.from_connection_string(
connection_string=self.cosmosdb_connection_string,
namespace=namespace,
embedding=self.embedding,
index_name=index_name,
application_name=self.application_name,
)
# create index for the vectorstore
vectorstore = self._cache_dict[index_name]
if not vectorstore.index_exists():
vectorstore.create_index(
self.num_lists,
self.dimensions,
self.similarity,
self.kind,
self.m,
self.ef_construction,
)
return vectorstore
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
llm_cache = self._get_llm_cache(llm_string)
generations: List = []
# Read from a Hash
results = llm_cache.similarity_search(
query=prompt,
k=1,
kind=self.kind,
ef_search=self.ef_search,
score_threshold=self.score_threshold, # type: ignore[arg-type]
)
if results:
for document in results:
try:
generations.extend(loads(document.metadata["return_val"]))
except Exception:
logger.warning(
"Retrieving a cache value that could not be deserialized "
"properly. This is likely due to the cache being in an "
"older format. Please recreate your cache to avoid this "
"error."
)
# In a previous life we stored the raw text directly
# in the table, so assume it's in that format.
generations.extend(
_load_generations_from_json(document.metadata["return_val"])
)
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"CosmosDBMongoVCoreSemanticCache only supports caching of "
f"normal LLM generations, got {type(gen)}"
)
llm_cache = self._get_llm_cache(llm_string)
metadata = {
"llm_string": llm_string,
"prompt": prompt,
"return_val": dumps([g for g in return_val]),
}
llm_cache.add_texts(texts=[prompt], metadatas=[metadata])
def clear(self, **kwargs: Any) -> None:
"""Clear semantic cache for a given llm_string."""
index_name = self._index_name(kwargs["llm_string"])
if index_name in self._cache_dict:
self._cache_dict[index_name].get_collection().delete_many({})
# self._cache_dict[index_name].clear_collection()
@staticmethod
def _validate_enum_value(value: Any, enum_type: Type[Enum]) -> None:
if not isinstance(value, enum_type):
raise ValueError(f"Invalid enum value: {value}. Expected {enum_type}.")
class OpenSearchSemanticCache(BaseCache):
"""Cache that uses OpenSearch vector store backend"""
def __init__(
self, opensearch_url: str, embedding: Embeddings, score_threshold: float = 0.2
):
"""
Args:
opensearch_url (str): URL to connect to OpenSearch.
embedding (Embedding): Embedding provider for semantic encoding and search.
score_threshold (float, 0.2):
Example:
.. code-block:: python
import langchain
from langchain.cache import OpenSearchSemanticCache
from langchain.embeddings import OpenAIEmbeddings
langchain.llm_cache = OpenSearchSemanticCache(
opensearch_url="http//localhost:9200",
embedding=OpenAIEmbeddings()
)
"""
self._cache_dict: Dict[str, OpenSearchVectorStore] = {}
self.opensearch_url = opensearch_url
self.embedding = embedding
self.score_threshold = score_threshold
def _index_name(self, llm_string: str) -> str:
hashed_index = _hash(llm_string)
return f"cache_{hashed_index}"
def _get_llm_cache(self, llm_string: str) -> OpenSearchVectorStore:
index_name = self._index_name(llm_string)
# return vectorstore client for the specific llm string
if index_name in self._cache_dict:
return self._cache_dict[index_name]
# create new vectorstore client for the specific llm string
self._cache_dict[index_name] = OpenSearchVectorStore(
opensearch_url=self.opensearch_url,
index_name=index_name,
embedding_function=self.embedding,
)
# create index for the vectorstore
vectorstore = self._cache_dict[index_name]
if not vectorstore.index_exists():
_embedding = self.embedding.embed_query(text="test")
vectorstore.create_index(len(_embedding), index_name)
return vectorstore
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
llm_cache = self._get_llm_cache(llm_string)
generations: List = []
# Read from a Hash
results = llm_cache.similarity_search(
query=prompt,
k=1,
score_threshold=self.score_threshold,
)
if results:
for document in results:
try:
generations.extend(loads(document.metadata["return_val"]))
except Exception:
logger.warning(
"Retrieving a cache value that could not be deserialized "
"properly. This is likely due to the cache being in an "
"older format. Please recreate your cache to avoid this "
"error."
)
generations.extend(
_load_generations_from_json(document.metadata["return_val"])
)
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"OpenSearchSemanticCache only supports caching of "
f"normal LLM generations, got {type(gen)}"
)
llm_cache = self._get_llm_cache(llm_string)
metadata = {
"llm_string": llm_string,
"prompt": prompt,
"return_val": dumps([g for g in return_val]),
}
llm_cache.add_texts(texts=[prompt], metadatas=[metadata])
def clear(self, **kwargs: Any) -> None:
"""Clear semantic cache for a given llm_string."""
index_name = self._index_name(kwargs["llm_string"])
if index_name in self._cache_dict:
self._cache_dict[index_name].delete_index(index_name=index_name)
del self._cache_dict[index_name]