mirror of
https://github.com/hwchase17/langchain
synced 2024-11-16 06:13:16 +00:00
8bbdb4f6a0
### Description Use OpenSearch vector store as Semantic Cache. ### Twitter Handle **@OpenSearchProj** --------- Signed-off-by: Naveen Tatikonda <navtat@amazon.com> Co-authored-by: Harish Tatikonda <harishtatikonda@Harishs-MacBook-Air.local> Co-authored-by: EC2 Default User <ec2-user@ip-172-31-31-155.ec2.internal> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2158 lines
81 KiB
Python
2158 lines
81 KiB
Python
"""
|
|
.. warning::
|
|
Beta Feature!
|
|
|
|
**Cache** provides an optional caching layer for LLMs.
|
|
|
|
Cache is useful for two reasons:
|
|
|
|
- It can save you money by reducing the number of API calls you make to the LLM
|
|
provider if you're often requesting the same completion multiple times.
|
|
- It can speed up your application by reducing the number of API calls you make
|
|
to the LLM provider.
|
|
|
|
Cache directly competes with Memory. See documentation for Pros and Cons.
|
|
|
|
**Class hierarchy:**
|
|
|
|
.. code-block::
|
|
|
|
BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import hashlib
|
|
import inspect
|
|
import json
|
|
import logging
|
|
import uuid
|
|
import warnings
|
|
from abc import ABC
|
|
from datetime import timedelta
|
|
from enum import Enum
|
|
from functools import lru_cache, wraps
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Awaitable,
|
|
Callable,
|
|
Dict,
|
|
Generator,
|
|
List,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
from sqlalchemy import Column, Integer, String, create_engine, delete, select
|
|
from sqlalchemy.engine import Row
|
|
from sqlalchemy.engine.base import Engine
|
|
from sqlalchemy.orm import Session
|
|
|
|
from langchain_community.vectorstores.azure_cosmos_db import (
|
|
CosmosDBSimilarityType,
|
|
CosmosDBVectorSearchType,
|
|
)
|
|
|
|
try:
|
|
from sqlalchemy.orm import declarative_base
|
|
except ImportError:
|
|
from sqlalchemy.ext.declarative import declarative_base
|
|
|
|
from langchain_core._api.deprecation import deprecated
|
|
from langchain_core.caches import RETURN_VAL_TYPE, BaseCache
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.language_models.llms import LLM, aget_prompts, get_prompts
|
|
from langchain_core.load.dump import dumps
|
|
from langchain_core.load.load import loads
|
|
from langchain_core.outputs import ChatGeneration, Generation
|
|
from langchain_core.utils import get_from_env
|
|
|
|
from langchain_community.utilities.astradb import (
|
|
SetupMode,
|
|
_AstraDBCollectionEnvironment,
|
|
)
|
|
from langchain_community.vectorstores import AzureCosmosDBVectorSearch
|
|
from langchain_community.vectorstores import (
|
|
OpenSearchVectorSearch as OpenSearchVectorStore,
|
|
)
|
|
from langchain_community.vectorstores.redis import Redis as RedisVectorstore
|
|
|
|
logger = logging.getLogger(__file__)
|
|
|
|
if TYPE_CHECKING:
|
|
import momento
|
|
from astrapy.db import AstraDB, AsyncAstraDB
|
|
from cassandra.cluster import Session as CassandraSession
|
|
|
|
|
|
def _hash(_input: str) -> str:
|
|
"""Use a deterministic hashing approach."""
|
|
return hashlib.md5(_input.encode()).hexdigest()
|
|
|
|
|
|
def _dump_generations_to_json(generations: RETURN_VAL_TYPE) -> str:
|
|
"""Dump generations to json.
|
|
|
|
Args:
|
|
generations (RETURN_VAL_TYPE): A list of language model generations.
|
|
|
|
Returns:
|
|
str: Json representing a list of generations.
|
|
|
|
Warning: would not work well with arbitrary subclasses of `Generation`
|
|
"""
|
|
return json.dumps([generation.dict() for generation in generations])
|
|
|
|
|
|
def _load_generations_from_json(generations_json: str) -> RETURN_VAL_TYPE:
|
|
"""Load generations from json.
|
|
|
|
Args:
|
|
generations_json (str): A string of json representing a list of generations.
|
|
|
|
Raises:
|
|
ValueError: Could not decode json string to list of generations.
|
|
|
|
Returns:
|
|
RETURN_VAL_TYPE: A list of generations.
|
|
|
|
Warning: would not work well with arbitrary subclasses of `Generation`
|
|
"""
|
|
try:
|
|
results = json.loads(generations_json)
|
|
return [Generation(**generation_dict) for generation_dict in results]
|
|
except json.JSONDecodeError:
|
|
raise ValueError(
|
|
f"Could not decode json to list of generations: {generations_json}"
|
|
)
|
|
|
|
|
|
def _dumps_generations(generations: RETURN_VAL_TYPE) -> str:
|
|
"""
|
|
Serialization for generic RETURN_VAL_TYPE, i.e. sequence of `Generation`
|
|
|
|
Args:
|
|
generations (RETURN_VAL_TYPE): A list of language model generations.
|
|
|
|
Returns:
|
|
str: a single string representing a list of generations.
|
|
|
|
This function (+ its counterpart `_loads_generations`) rely on
|
|
the dumps/loads pair with Reviver, so are able to deal
|
|
with all subclasses of Generation.
|
|
|
|
Each item in the list can be `dumps`ed to a string,
|
|
then we make the whole list of strings into a json-dumped.
|
|
"""
|
|
return json.dumps([dumps(_item) for _item in generations])
|
|
|
|
|
|
def _loads_generations(generations_str: str) -> Union[RETURN_VAL_TYPE, None]:
|
|
"""
|
|
Deserialization of a string into a generic RETURN_VAL_TYPE
|
|
(i.e. a sequence of `Generation`).
|
|
|
|
See `_dumps_generations`, the inverse of this function.
|
|
|
|
Args:
|
|
generations_str (str): A string representing a list of generations.
|
|
|
|
Compatible with the legacy cache-blob format
|
|
Does not raise exceptions for malformed entries, just logs a warning
|
|
and returns none: the caller should be prepared for such a cache miss.
|
|
|
|
Returns:
|
|
RETURN_VAL_TYPE: A list of generations.
|
|
"""
|
|
try:
|
|
generations = [loads(_item_str) for _item_str in json.loads(generations_str)]
|
|
return generations
|
|
except (json.JSONDecodeError, TypeError):
|
|
# deferring the (soft) handling to after the legacy-format attempt
|
|
pass
|
|
|
|
try:
|
|
gen_dicts = json.loads(generations_str)
|
|
# not relying on `_load_generations_from_json` (which could disappear):
|
|
generations = [Generation(**generation_dict) for generation_dict in gen_dicts]
|
|
logger.warning(
|
|
f"Legacy 'Generation' cached blob encountered: '{generations_str}'"
|
|
)
|
|
return generations
|
|
except (json.JSONDecodeError, TypeError):
|
|
logger.warning(
|
|
f"Malformed/unparsable cached blob encountered: '{generations_str}'"
|
|
)
|
|
return None
|
|
|
|
|
|
class InMemoryCache(BaseCache):
|
|
"""Cache that stores things in memory."""
|
|
|
|
def __init__(self) -> None:
|
|
"""Initialize with empty cache."""
|
|
self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {}
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
return self._cache.get((prompt, llm_string), None)
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
self._cache[(prompt, llm_string)] = return_val
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear cache."""
|
|
self._cache = {}
|
|
|
|
async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
return self.lookup(prompt, llm_string)
|
|
|
|
async def aupdate(
|
|
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
|
|
) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
self.update(prompt, llm_string, return_val)
|
|
|
|
async def aclear(self, **kwargs: Any) -> None:
|
|
"""Clear cache."""
|
|
self.clear()
|
|
|
|
|
|
Base = declarative_base()
|
|
|
|
|
|
class FullLLMCache(Base): # type: ignore
|
|
"""SQLite table for full LLM Cache (all generations)."""
|
|
|
|
__tablename__ = "full_llm_cache"
|
|
prompt = Column(String, primary_key=True)
|
|
llm = Column(String, primary_key=True)
|
|
idx = Column(Integer, primary_key=True)
|
|
response = Column(String)
|
|
|
|
|
|
class SQLAlchemyCache(BaseCache):
|
|
"""Cache that uses SQAlchemy as a backend."""
|
|
|
|
def __init__(self, engine: Engine, cache_schema: Type[FullLLMCache] = FullLLMCache):
|
|
"""Initialize by creating all tables."""
|
|
self.engine = engine
|
|
self.cache_schema = cache_schema
|
|
self.cache_schema.metadata.create_all(self.engine)
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
stmt = (
|
|
select(self.cache_schema.response)
|
|
.where(self.cache_schema.prompt == prompt) # type: ignore
|
|
.where(self.cache_schema.llm == llm_string)
|
|
.order_by(self.cache_schema.idx)
|
|
)
|
|
with Session(self.engine) as session:
|
|
rows = session.execute(stmt).fetchall()
|
|
if rows:
|
|
try:
|
|
return [loads(row[0]) for row in rows]
|
|
except Exception:
|
|
logger.warning(
|
|
"Retrieving a cache value that could not be deserialized "
|
|
"properly. This is likely due to the cache being in an "
|
|
"older format. Please recreate your cache to avoid this "
|
|
"error."
|
|
)
|
|
# In a previous life we stored the raw text directly
|
|
# in the table, so assume it's in that format.
|
|
return [Generation(text=row[0]) for row in rows]
|
|
return None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update based on prompt and llm_string."""
|
|
items = [
|
|
self.cache_schema(prompt=prompt, llm=llm_string, response=dumps(gen), idx=i)
|
|
for i, gen in enumerate(return_val)
|
|
]
|
|
with Session(self.engine) as session, session.begin():
|
|
for item in items:
|
|
session.merge(item)
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear cache."""
|
|
with Session(self.engine) as session:
|
|
session.query(self.cache_schema).delete()
|
|
session.commit()
|
|
|
|
|
|
class SQLiteCache(SQLAlchemyCache):
|
|
"""Cache that uses SQLite as a backend."""
|
|
|
|
def __init__(self, database_path: str = ".langchain.db"):
|
|
"""Initialize by creating the engine and all tables."""
|
|
engine = create_engine(f"sqlite:///{database_path}")
|
|
super().__init__(engine)
|
|
|
|
|
|
class UpstashRedisCache(BaseCache):
|
|
"""Cache that uses Upstash Redis as a backend."""
|
|
|
|
def __init__(self, redis_: Any, *, ttl: Optional[int] = None):
|
|
"""
|
|
Initialize an instance of UpstashRedisCache.
|
|
|
|
This method initializes an object with Upstash Redis caching capabilities.
|
|
It takes a `redis_` parameter, which should be an instance of an Upstash Redis
|
|
client class, allowing the object to interact with Upstash Redis
|
|
server for caching purposes.
|
|
|
|
Parameters:
|
|
redis_: An instance of Upstash Redis client class
|
|
(e.g., Redis) used for caching.
|
|
This allows the object to communicate with
|
|
Redis server for caching operations on.
|
|
ttl (int, optional): Time-to-live (TTL) for cached items in seconds.
|
|
If provided, it sets the time duration for how long cached
|
|
items will remain valid. If not provided, cached items will not
|
|
have an automatic expiration.
|
|
"""
|
|
try:
|
|
from upstash_redis import Redis
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import upstash_redis python package. "
|
|
"Please install it with `pip install upstash_redis`."
|
|
)
|
|
if not isinstance(redis_, Redis):
|
|
raise ValueError("Please pass in Upstash Redis object.")
|
|
self.redis = redis_
|
|
self.ttl = ttl
|
|
|
|
def _key(self, prompt: str, llm_string: str) -> str:
|
|
"""Compute key from prompt and llm_string"""
|
|
return _hash(prompt + llm_string)
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
generations = []
|
|
# Read from a HASH
|
|
results = self.redis.hgetall(self._key(prompt, llm_string))
|
|
if results:
|
|
for _, text in results.items():
|
|
generations.append(Generation(text=text))
|
|
return generations if generations else None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
for gen in return_val:
|
|
if not isinstance(gen, Generation):
|
|
raise ValueError(
|
|
"UpstashRedisCache supports caching of normal LLM generations, "
|
|
f"got {type(gen)}"
|
|
)
|
|
if isinstance(gen, ChatGeneration):
|
|
warnings.warn(
|
|
"NOTE: Generation has not been cached. UpstashRedisCache does not"
|
|
" support caching ChatModel outputs."
|
|
)
|
|
return
|
|
# Write to a HASH
|
|
key = self._key(prompt, llm_string)
|
|
|
|
mapping = {
|
|
str(idx): generation.text for idx, generation in enumerate(return_val)
|
|
}
|
|
self.redis.hset(key=key, values=mapping)
|
|
|
|
if self.ttl is not None:
|
|
self.redis.expire(key, self.ttl)
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""
|
|
Clear cache. If `asynchronous` is True, flush asynchronously.
|
|
This flushes the *whole* db.
|
|
"""
|
|
asynchronous = kwargs.get("asynchronous", False)
|
|
if asynchronous:
|
|
asynchronous = "ASYNC"
|
|
else:
|
|
asynchronous = "SYNC"
|
|
self.redis.flushdb(flush_type=asynchronous)
|
|
|
|
|
|
class _RedisCacheBase(BaseCache, ABC):
|
|
@staticmethod
|
|
def _key(prompt: str, llm_string: str) -> str:
|
|
"""Compute key from prompt and llm_string"""
|
|
return _hash(prompt + llm_string)
|
|
|
|
@staticmethod
|
|
def _ensure_generation_type(return_val: RETURN_VAL_TYPE) -> None:
|
|
for gen in return_val:
|
|
if not isinstance(gen, Generation):
|
|
raise ValueError(
|
|
"RedisCache only supports caching of normal LLM generations, "
|
|
f"got {type(gen)}"
|
|
)
|
|
|
|
@staticmethod
|
|
def _get_generations(
|
|
results: dict[str | bytes, str | bytes],
|
|
) -> Optional[List[Generation]]:
|
|
generations = []
|
|
if results:
|
|
for _, text in results.items():
|
|
try:
|
|
generations.append(loads(cast(str, text)))
|
|
except Exception:
|
|
logger.warning(
|
|
"Retrieving a cache value that could not be deserialized "
|
|
"properly. This is likely due to the cache being in an "
|
|
"older format. Please recreate your cache to avoid this "
|
|
"error."
|
|
)
|
|
# In a previous life we stored the raw text directly
|
|
# in the table, so assume it's in that format.
|
|
generations.append(Generation(text=text))
|
|
return generations if generations else None
|
|
|
|
@staticmethod
|
|
def _configure_pipeline_for_update(
|
|
key: str, pipe: Any, return_val: RETURN_VAL_TYPE, ttl: Optional[int] = None
|
|
) -> None:
|
|
pipe.hset(
|
|
key,
|
|
mapping={
|
|
str(idx): dumps(generation) for idx, generation in enumerate(return_val)
|
|
},
|
|
)
|
|
if ttl is not None:
|
|
pipe.expire(key, ttl)
|
|
|
|
|
|
class RedisCache(_RedisCacheBase):
|
|
"""
|
|
Cache that uses Redis as a backend. Allows to use a sync `redis.Redis` client.
|
|
"""
|
|
|
|
def __init__(self, redis_: Any, *, ttl: Optional[int] = None):
|
|
"""
|
|
Initialize an instance of RedisCache.
|
|
|
|
This method initializes an object with Redis caching capabilities.
|
|
It takes a `redis_` parameter, which should be an instance of a Redis
|
|
client class (`redis.Redis`), allowing the object
|
|
to interact with a Redis server for caching purposes.
|
|
|
|
Parameters:
|
|
redis_ (Any): An instance of a Redis client class
|
|
(`redis.Redis`) to be used for caching.
|
|
This allows the object to communicate with a
|
|
Redis server for caching operations.
|
|
ttl (int, optional): Time-to-live (TTL) for cached items in seconds.
|
|
If provided, it sets the time duration for how long cached
|
|
items will remain valid. If not provided, cached items will not
|
|
have an automatic expiration.
|
|
"""
|
|
try:
|
|
from redis import Redis
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import `redis` python package. "
|
|
"Please install it with `pip install redis`."
|
|
)
|
|
if not isinstance(redis_, Redis):
|
|
raise ValueError("Please pass a valid `redis.Redis` client.")
|
|
self.redis = redis_
|
|
self.ttl = ttl
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
# Read from a Redis HASH
|
|
try:
|
|
results = self.redis.hgetall(self._key(prompt, llm_string))
|
|
return self._get_generations(results) # type: ignore[arg-type]
|
|
except Exception as e:
|
|
logger.error(f"Redis lookup failed: {e}")
|
|
return None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
self._ensure_generation_type(return_val)
|
|
key = self._key(prompt, llm_string)
|
|
try:
|
|
with self.redis.pipeline() as pipe:
|
|
self._configure_pipeline_for_update(key, pipe, return_val, self.ttl)
|
|
pipe.execute()
|
|
except Exception as e:
|
|
logger.error(f"Redis update failed: {e}")
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear cache. If `asynchronous` is True, flush asynchronously."""
|
|
try:
|
|
asynchronous = kwargs.get("asynchronous", False)
|
|
self.redis.flushdb(asynchronous=asynchronous, **kwargs)
|
|
except Exception as e:
|
|
logger.error(f"Redis clear failed: {e}")
|
|
|
|
|
|
class AsyncRedisCache(_RedisCacheBase):
|
|
"""
|
|
Cache that uses Redis as a backend. Allows to use an
|
|
async `redis.asyncio.Redis` client.
|
|
"""
|
|
|
|
def __init__(self, redis_: Any, *, ttl: Optional[int] = None):
|
|
"""
|
|
Initialize an instance of AsyncRedisCache.
|
|
|
|
This method initializes an object with Redis caching capabilities.
|
|
It takes a `redis_` parameter, which should be an instance of a Redis
|
|
client class (`redis.asyncio.Redis`), allowing the object
|
|
to interact with a Redis server for caching purposes.
|
|
|
|
Parameters:
|
|
redis_ (Any): An instance of a Redis client class
|
|
(`redis.asyncio.Redis`) to be used for caching.
|
|
This allows the object to communicate with a
|
|
Redis server for caching operations.
|
|
ttl (int, optional): Time-to-live (TTL) for cached items in seconds.
|
|
If provided, it sets the time duration for how long cached
|
|
items will remain valid. If not provided, cached items will not
|
|
have an automatic expiration.
|
|
"""
|
|
try:
|
|
from redis.asyncio import Redis
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import `redis.asyncio` python package. "
|
|
"Please install it with `pip install redis`."
|
|
)
|
|
if not isinstance(redis_, Redis):
|
|
raise ValueError("Please pass a valid `redis.asyncio.Redis` client.")
|
|
self.redis = redis_
|
|
self.ttl = ttl
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
raise NotImplementedError(
|
|
"This async Redis cache does not implement `lookup()` method. "
|
|
"Consider using the async `alookup()` version."
|
|
)
|
|
|
|
async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string. Async version."""
|
|
try:
|
|
results = await self.redis.hgetall(self._key(prompt, llm_string))
|
|
return self._get_generations(results) # type: ignore[arg-type]
|
|
except Exception as e:
|
|
logger.error(f"Redis async lookup failed: {e}")
|
|
return None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
raise NotImplementedError(
|
|
"This async Redis cache does not implement `update()` method. "
|
|
"Consider using the async `aupdate()` version."
|
|
)
|
|
|
|
async def aupdate(
|
|
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
|
|
) -> None:
|
|
"""Update cache based on prompt and llm_string. Async version."""
|
|
self._ensure_generation_type(return_val)
|
|
key = self._key(prompt, llm_string)
|
|
try:
|
|
async with self.redis.pipeline() as pipe:
|
|
self._configure_pipeline_for_update(key, pipe, return_val, self.ttl)
|
|
await pipe.execute() # type: ignore[attr-defined]
|
|
except Exception as e:
|
|
logger.error(f"Redis async update failed: {e}")
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear cache. If `asynchronous` is True, flush asynchronously."""
|
|
raise NotImplementedError(
|
|
"This async Redis cache does not implement `clear()` method. "
|
|
"Consider using the async `aclear()` version."
|
|
)
|
|
|
|
async def aclear(self, **kwargs: Any) -> None:
|
|
"""
|
|
Clear cache. If `asynchronous` is True, flush asynchronously.
|
|
Async version.
|
|
"""
|
|
try:
|
|
asynchronous = kwargs.get("asynchronous", False)
|
|
await self.redis.flushdb(asynchronous=asynchronous, **kwargs)
|
|
except Exception as e:
|
|
logger.error(f"Redis async clear failed: {e}")
|
|
|
|
|
|
class RedisSemanticCache(BaseCache):
|
|
"""Cache that uses Redis as a vector-store backend."""
|
|
|
|
# TODO - implement a TTL policy in Redis
|
|
|
|
DEFAULT_SCHEMA = {
|
|
"content_key": "prompt",
|
|
"text": [
|
|
{"name": "prompt"},
|
|
],
|
|
"extra": [{"name": "return_val"}, {"name": "llm_string"}],
|
|
}
|
|
|
|
def __init__(
|
|
self, redis_url: str, embedding: Embeddings, score_threshold: float = 0.2
|
|
):
|
|
"""Initialize by passing in the `init` GPTCache func
|
|
|
|
Args:
|
|
redis_url (str): URL to connect to Redis.
|
|
embedding (Embedding): Embedding provider for semantic encoding and search.
|
|
score_threshold (float, 0.2):
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.globals import set_llm_cache
|
|
|
|
from langchain_community.cache import RedisSemanticCache
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
|
|
set_llm_cache(RedisSemanticCache(
|
|
redis_url="redis://localhost:6379",
|
|
embedding=OpenAIEmbeddings()
|
|
))
|
|
|
|
"""
|
|
self._cache_dict: Dict[str, RedisVectorstore] = {}
|
|
self.redis_url = redis_url
|
|
self.embedding = embedding
|
|
self.score_threshold = score_threshold
|
|
|
|
def _index_name(self, llm_string: str) -> str:
|
|
hashed_index = _hash(llm_string)
|
|
return f"cache:{hashed_index}"
|
|
|
|
def _get_llm_cache(self, llm_string: str) -> RedisVectorstore:
|
|
index_name = self._index_name(llm_string)
|
|
|
|
# return vectorstore client for the specific llm string
|
|
if index_name in self._cache_dict:
|
|
return self._cache_dict[index_name]
|
|
|
|
# create new vectorstore client for the specific llm string
|
|
try:
|
|
self._cache_dict[index_name] = RedisVectorstore.from_existing_index(
|
|
embedding=self.embedding,
|
|
index_name=index_name,
|
|
redis_url=self.redis_url,
|
|
schema=cast(Dict, self.DEFAULT_SCHEMA),
|
|
)
|
|
except ValueError:
|
|
redis = RedisVectorstore(
|
|
embedding=self.embedding,
|
|
index_name=index_name,
|
|
redis_url=self.redis_url,
|
|
index_schema=cast(Dict, self.DEFAULT_SCHEMA),
|
|
)
|
|
_embedding = self.embedding.embed_query(text="test")
|
|
redis._create_index_if_not_exist(dim=len(_embedding))
|
|
self._cache_dict[index_name] = redis
|
|
|
|
return self._cache_dict[index_name]
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear semantic cache for a given llm_string."""
|
|
index_name = self._index_name(kwargs["llm_string"])
|
|
if index_name in self._cache_dict:
|
|
self._cache_dict[index_name].drop_index(
|
|
index_name=index_name, delete_documents=True, redis_url=self.redis_url
|
|
)
|
|
del self._cache_dict[index_name]
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
llm_cache = self._get_llm_cache(llm_string)
|
|
generations: List = []
|
|
# Read from a Hash
|
|
results = llm_cache.similarity_search(
|
|
query=prompt,
|
|
k=1,
|
|
distance_threshold=self.score_threshold,
|
|
)
|
|
if results:
|
|
for document in results:
|
|
try:
|
|
generations.extend(loads(document.metadata["return_val"]))
|
|
except Exception:
|
|
logger.warning(
|
|
"Retrieving a cache value that could not be deserialized "
|
|
"properly. This is likely due to the cache being in an "
|
|
"older format. Please recreate your cache to avoid this "
|
|
"error."
|
|
)
|
|
# In a previous life we stored the raw text directly
|
|
# in the table, so assume it's in that format.
|
|
generations.extend(
|
|
_load_generations_from_json(document.metadata["return_val"])
|
|
)
|
|
return generations if generations else None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
for gen in return_val:
|
|
if not isinstance(gen, Generation):
|
|
raise ValueError(
|
|
"RedisSemanticCache only supports caching of "
|
|
f"normal LLM generations, got {type(gen)}"
|
|
)
|
|
llm_cache = self._get_llm_cache(llm_string)
|
|
|
|
metadata = {
|
|
"llm_string": llm_string,
|
|
"prompt": prompt,
|
|
"return_val": dumps([g for g in return_val]),
|
|
}
|
|
llm_cache.add_texts(texts=[prompt], metadatas=[metadata])
|
|
|
|
|
|
class GPTCache(BaseCache):
|
|
"""Cache that uses GPTCache as a backend."""
|
|
|
|
def __init__(
|
|
self,
|
|
init_func: Union[
|
|
Callable[[Any, str], None], Callable[[Any], None], None
|
|
] = None,
|
|
):
|
|
"""Initialize by passing in init function (default: `None`).
|
|
|
|
Args:
|
|
init_func (Optional[Callable[[Any], None]]): init `GPTCache` function
|
|
(default: `None`)
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
# Initialize GPTCache with a custom init function
|
|
import gptcache
|
|
from gptcache.processor.pre import get_prompt
|
|
from gptcache.manager.factory import get_data_manager
|
|
from langchain_community.globals import set_llm_cache
|
|
|
|
# Avoid multiple caches using the same file,
|
|
causing different llm model caches to affect each other
|
|
|
|
def init_gptcache(cache_obj: gptcache.Cache, llm str):
|
|
cache_obj.init(
|
|
pre_embedding_func=get_prompt,
|
|
data_manager=manager_factory(
|
|
manager="map",
|
|
data_dir=f"map_cache_{llm}"
|
|
),
|
|
)
|
|
|
|
set_llm_cache(GPTCache(init_gptcache))
|
|
|
|
"""
|
|
try:
|
|
import gptcache # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import gptcache python package. "
|
|
"Please install it with `pip install gptcache`."
|
|
)
|
|
|
|
self.init_gptcache_func: Union[
|
|
Callable[[Any, str], None], Callable[[Any], None], None
|
|
] = init_func
|
|
self.gptcache_dict: Dict[str, Any] = {}
|
|
|
|
def _new_gptcache(self, llm_string: str) -> Any:
|
|
"""New gptcache object"""
|
|
from gptcache import Cache
|
|
from gptcache.manager.factory import get_data_manager
|
|
from gptcache.processor.pre import get_prompt
|
|
|
|
_gptcache = Cache()
|
|
if self.init_gptcache_func is not None:
|
|
sig = inspect.signature(self.init_gptcache_func)
|
|
if len(sig.parameters) == 2:
|
|
self.init_gptcache_func(_gptcache, llm_string) # type: ignore[call-arg]
|
|
else:
|
|
self.init_gptcache_func(_gptcache) # type: ignore[call-arg]
|
|
else:
|
|
_gptcache.init(
|
|
pre_embedding_func=get_prompt,
|
|
data_manager=get_data_manager(data_path=llm_string),
|
|
)
|
|
|
|
self.gptcache_dict[llm_string] = _gptcache
|
|
return _gptcache
|
|
|
|
def _get_gptcache(self, llm_string: str) -> Any:
|
|
"""Get a cache object.
|
|
|
|
When the corresponding llm model cache does not exist, it will be created."""
|
|
_gptcache = self.gptcache_dict.get(llm_string, None)
|
|
if not _gptcache:
|
|
_gptcache = self._new_gptcache(llm_string)
|
|
return _gptcache
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up the cache data.
|
|
First, retrieve the corresponding cache object using the `llm_string` parameter,
|
|
and then retrieve the data from the cache based on the `prompt`.
|
|
"""
|
|
from gptcache.adapter.api import get
|
|
|
|
_gptcache = self._get_gptcache(llm_string)
|
|
|
|
res = get(prompt, cache_obj=_gptcache)
|
|
return _loads_generations(res) if res is not None else None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache.
|
|
First, retrieve the corresponding cache object using the `llm_string` parameter,
|
|
and then store the `prompt` and `return_val` in the cache object.
|
|
"""
|
|
for gen in return_val:
|
|
if not isinstance(gen, Generation):
|
|
raise ValueError(
|
|
"GPTCache only supports caching of normal LLM generations, "
|
|
f"got {type(gen)}"
|
|
)
|
|
from gptcache.adapter.api import put
|
|
|
|
_gptcache = self._get_gptcache(llm_string)
|
|
handled_data = _dumps_generations(return_val)
|
|
put(prompt, handled_data, cache_obj=_gptcache)
|
|
return None
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear cache."""
|
|
from gptcache import Cache
|
|
|
|
for gptcache_instance in self.gptcache_dict.values():
|
|
gptcache_instance = cast(Cache, gptcache_instance)
|
|
gptcache_instance.flush()
|
|
|
|
self.gptcache_dict.clear()
|
|
|
|
|
|
def _ensure_cache_exists(cache_client: momento.CacheClient, cache_name: str) -> None:
|
|
"""Create cache if it doesn't exist.
|
|
|
|
Raises:
|
|
SdkException: Momento service or network error
|
|
Exception: Unexpected response
|
|
"""
|
|
from momento.responses import CreateCache
|
|
|
|
create_cache_response = cache_client.create_cache(cache_name)
|
|
if isinstance(create_cache_response, CreateCache.Success) or isinstance(
|
|
create_cache_response, CreateCache.CacheAlreadyExists
|
|
):
|
|
return None
|
|
elif isinstance(create_cache_response, CreateCache.Error):
|
|
raise create_cache_response.inner_exception
|
|
else:
|
|
raise Exception(f"Unexpected response cache creation: {create_cache_response}")
|
|
|
|
|
|
def _validate_ttl(ttl: Optional[timedelta]) -> None:
|
|
if ttl is not None and ttl <= timedelta(seconds=0):
|
|
raise ValueError(f"ttl must be positive but was {ttl}.")
|
|
|
|
|
|
class MomentoCache(BaseCache):
|
|
"""Cache that uses Momento as a backend. See https://gomomento.com/"""
|
|
|
|
def __init__(
|
|
self,
|
|
cache_client: momento.CacheClient,
|
|
cache_name: str,
|
|
*,
|
|
ttl: Optional[timedelta] = None,
|
|
ensure_cache_exists: bool = True,
|
|
):
|
|
"""Instantiate a prompt cache using Momento as a backend.
|
|
|
|
Note: to instantiate the cache client passed to MomentoCache,
|
|
you must have a Momento account. See https://gomomento.com/.
|
|
|
|
Args:
|
|
cache_client (CacheClient): The Momento cache client.
|
|
cache_name (str): The name of the cache to use to store the data.
|
|
ttl (Optional[timedelta], optional): The time to live for the cache items.
|
|
Defaults to None, ie use the client default TTL.
|
|
ensure_cache_exists (bool, optional): Create the cache if it doesn't
|
|
exist. Defaults to True.
|
|
|
|
Raises:
|
|
ImportError: Momento python package is not installed.
|
|
TypeError: cache_client is not of type momento.CacheClientObject
|
|
ValueError: ttl is non-null and non-negative
|
|
"""
|
|
try:
|
|
from momento import CacheClient
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import momento python package. "
|
|
"Please install it with `pip install momento`."
|
|
)
|
|
if not isinstance(cache_client, CacheClient):
|
|
raise TypeError("cache_client must be a momento.CacheClient object.")
|
|
_validate_ttl(ttl)
|
|
if ensure_cache_exists:
|
|
_ensure_cache_exists(cache_client, cache_name)
|
|
|
|
self.cache_client = cache_client
|
|
self.cache_name = cache_name
|
|
self.ttl = ttl
|
|
|
|
@classmethod
|
|
def from_client_params(
|
|
cls,
|
|
cache_name: str,
|
|
ttl: timedelta,
|
|
*,
|
|
configuration: Optional[momento.config.Configuration] = None,
|
|
api_key: Optional[str] = None,
|
|
auth_token: Optional[str] = None, # for backwards compatibility
|
|
**kwargs: Any,
|
|
) -> MomentoCache:
|
|
"""Construct cache from CacheClient parameters."""
|
|
try:
|
|
from momento import CacheClient, Configurations, CredentialProvider
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import momento python package. "
|
|
"Please install it with `pip install momento`."
|
|
)
|
|
if configuration is None:
|
|
configuration = Configurations.Laptop.v1()
|
|
|
|
# Try checking `MOMENTO_AUTH_TOKEN` first for backwards compatibility
|
|
try:
|
|
api_key = auth_token or get_from_env("auth_token", "MOMENTO_AUTH_TOKEN")
|
|
except ValueError:
|
|
api_key = api_key or get_from_env("api_key", "MOMENTO_API_KEY")
|
|
credentials = CredentialProvider.from_string(api_key)
|
|
cache_client = CacheClient(configuration, credentials, default_ttl=ttl)
|
|
return cls(cache_client, cache_name, ttl=ttl, **kwargs)
|
|
|
|
def __key(self, prompt: str, llm_string: str) -> str:
|
|
"""Compute cache key from prompt and associated model and settings.
|
|
|
|
Args:
|
|
prompt (str): The prompt run through the language model.
|
|
llm_string (str): The language model version and settings.
|
|
|
|
Returns:
|
|
str: The cache key.
|
|
"""
|
|
return _hash(prompt + llm_string)
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Lookup llm generations in cache by prompt and associated model and settings.
|
|
|
|
Args:
|
|
prompt (str): The prompt run through the language model.
|
|
llm_string (str): The language model version and settings.
|
|
|
|
Raises:
|
|
SdkException: Momento service or network error
|
|
|
|
Returns:
|
|
Optional[RETURN_VAL_TYPE]: A list of language model generations.
|
|
"""
|
|
from momento.responses import CacheGet
|
|
|
|
generations: RETURN_VAL_TYPE = []
|
|
|
|
get_response = self.cache_client.get(
|
|
self.cache_name, self.__key(prompt, llm_string)
|
|
)
|
|
if isinstance(get_response, CacheGet.Hit):
|
|
value = get_response.value_string
|
|
generations = _load_generations_from_json(value)
|
|
elif isinstance(get_response, CacheGet.Miss):
|
|
pass
|
|
elif isinstance(get_response, CacheGet.Error):
|
|
raise get_response.inner_exception
|
|
return generations if generations else None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Store llm generations in cache.
|
|
|
|
Args:
|
|
prompt (str): The prompt run through the language model.
|
|
llm_string (str): The language model string.
|
|
return_val (RETURN_VAL_TYPE): A list of language model generations.
|
|
|
|
Raises:
|
|
SdkException: Momento service or network error
|
|
Exception: Unexpected response
|
|
"""
|
|
for gen in return_val:
|
|
if not isinstance(gen, Generation):
|
|
raise ValueError(
|
|
"Momento only supports caching of normal LLM generations, "
|
|
f"got {type(gen)}"
|
|
)
|
|
key = self.__key(prompt, llm_string)
|
|
value = _dump_generations_to_json(return_val)
|
|
set_response = self.cache_client.set(self.cache_name, key, value, self.ttl)
|
|
from momento.responses import CacheSet
|
|
|
|
if isinstance(set_response, CacheSet.Success):
|
|
pass
|
|
elif isinstance(set_response, CacheSet.Error):
|
|
raise set_response.inner_exception
|
|
else:
|
|
raise Exception(f"Unexpected response: {set_response}")
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear the cache.
|
|
|
|
Raises:
|
|
SdkException: Momento service or network error
|
|
"""
|
|
from momento.responses import CacheFlush
|
|
|
|
flush_response = self.cache_client.flush_cache(self.cache_name)
|
|
if isinstance(flush_response, CacheFlush.Success):
|
|
pass
|
|
elif isinstance(flush_response, CacheFlush.Error):
|
|
raise flush_response.inner_exception
|
|
|
|
|
|
CASSANDRA_CACHE_DEFAULT_TABLE_NAME = "langchain_llm_cache"
|
|
CASSANDRA_CACHE_DEFAULT_TTL_SECONDS = None
|
|
|
|
|
|
class CassandraCache(BaseCache):
|
|
"""
|
|
Cache that uses Cassandra / Astra DB as a backend.
|
|
|
|
It uses a single Cassandra table.
|
|
The lookup keys (which get to form the primary key) are:
|
|
- prompt, a string
|
|
- llm_string, a deterministic str representation of the model parameters.
|
|
(needed to prevent collisions same-prompt-different-model collisions)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
session: Optional[CassandraSession] = None,
|
|
keyspace: Optional[str] = None,
|
|
table_name: str = CASSANDRA_CACHE_DEFAULT_TABLE_NAME,
|
|
ttl_seconds: Optional[int] = CASSANDRA_CACHE_DEFAULT_TTL_SECONDS,
|
|
skip_provisioning: bool = False,
|
|
):
|
|
"""
|
|
Initialize with a ready session and a keyspace name.
|
|
Args:
|
|
session (cassandra.cluster.Session): an open Cassandra session
|
|
keyspace (str): the keyspace to use for storing the cache
|
|
table_name (str): name of the Cassandra table to use as cache
|
|
ttl_seconds (optional int): time-to-live for cache entries
|
|
(default: None, i.e. forever)
|
|
"""
|
|
try:
|
|
from cassio.table import ElasticCassandraTable
|
|
except (ImportError, ModuleNotFoundError):
|
|
raise ValueError(
|
|
"Could not import cassio python package. "
|
|
"Please install it with `pip install cassio`."
|
|
)
|
|
|
|
self.session = session
|
|
self.keyspace = keyspace
|
|
self.table_name = table_name
|
|
self.ttl_seconds = ttl_seconds
|
|
|
|
self.kv_cache = ElasticCassandraTable(
|
|
session=self.session,
|
|
keyspace=self.keyspace,
|
|
table=self.table_name,
|
|
keys=["llm_string", "prompt"],
|
|
primary_key_type=["TEXT", "TEXT"],
|
|
ttl_seconds=self.ttl_seconds,
|
|
skip_provisioning=skip_provisioning,
|
|
)
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
item = self.kv_cache.get(
|
|
llm_string=_hash(llm_string),
|
|
prompt=_hash(prompt),
|
|
)
|
|
if item is not None:
|
|
generations = _loads_generations(item["body_blob"])
|
|
# this protects against malformed cached items:
|
|
if generations is not None:
|
|
return generations
|
|
else:
|
|
return None
|
|
else:
|
|
return None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
blob = _dumps_generations(return_val)
|
|
self.kv_cache.put(
|
|
llm_string=_hash(llm_string),
|
|
prompt=_hash(prompt),
|
|
body_blob=blob,
|
|
)
|
|
|
|
def delete_through_llm(
|
|
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
|
|
) -> None:
|
|
"""
|
|
A wrapper around `delete` with the LLM being passed.
|
|
In case the llm.invoke(prompt) calls have a `stop` param, you should
|
|
pass it here
|
|
"""
|
|
llm_string = get_prompts(
|
|
{**llm.dict(), **{"stop": stop}},
|
|
[],
|
|
)[1]
|
|
return self.delete(prompt, llm_string=llm_string)
|
|
|
|
def delete(self, prompt: str, llm_string: str) -> None:
|
|
"""Evict from cache if there's an entry."""
|
|
return self.kv_cache.delete(
|
|
llm_string=_hash(llm_string),
|
|
prompt=_hash(prompt),
|
|
)
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear cache. This is for all LLMs at once."""
|
|
self.kv_cache.clear()
|
|
|
|
|
|
CASSANDRA_SEMANTIC_CACHE_DEFAULT_DISTANCE_METRIC = "dot"
|
|
CASSANDRA_SEMANTIC_CACHE_DEFAULT_SCORE_THRESHOLD = 0.85
|
|
CASSANDRA_SEMANTIC_CACHE_DEFAULT_TABLE_NAME = "langchain_llm_semantic_cache"
|
|
CASSANDRA_SEMANTIC_CACHE_DEFAULT_TTL_SECONDS = None
|
|
CASSANDRA_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE = 16
|
|
|
|
|
|
class CassandraSemanticCache(BaseCache):
|
|
"""
|
|
Cache that uses Cassandra as a vector-store backend for semantic
|
|
(i.e. similarity-based) lookup.
|
|
|
|
It uses a single (vector) Cassandra table and stores, in principle,
|
|
cached values from several LLMs, so the LLM's llm_string is part
|
|
of the rows' primary keys.
|
|
|
|
The similarity is based on one of several distance metrics (default: "dot").
|
|
If choosing another metric, the default threshold is to be re-tuned accordingly.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
session: Optional[CassandraSession],
|
|
keyspace: Optional[str],
|
|
embedding: Embeddings,
|
|
table_name: str = CASSANDRA_SEMANTIC_CACHE_DEFAULT_TABLE_NAME,
|
|
distance_metric: str = CASSANDRA_SEMANTIC_CACHE_DEFAULT_DISTANCE_METRIC,
|
|
score_threshold: float = CASSANDRA_SEMANTIC_CACHE_DEFAULT_SCORE_THRESHOLD,
|
|
ttl_seconds: Optional[int] = CASSANDRA_SEMANTIC_CACHE_DEFAULT_TTL_SECONDS,
|
|
skip_provisioning: bool = False,
|
|
):
|
|
"""
|
|
Initialize the cache with all relevant parameters.
|
|
Args:
|
|
session (cassandra.cluster.Session): an open Cassandra session
|
|
keyspace (str): the keyspace to use for storing the cache
|
|
embedding (Embedding): Embedding provider for semantic
|
|
encoding and search.
|
|
table_name (str): name of the Cassandra (vector) table
|
|
to use as cache
|
|
distance_metric (str, 'dot'): which measure to adopt for
|
|
similarity searches
|
|
score_threshold (optional float): numeric value to use as
|
|
cutoff for the similarity searches
|
|
ttl_seconds (optional int): time-to-live for cache entries
|
|
(default: None, i.e. forever)
|
|
The default score threshold is tuned to the default metric.
|
|
Tune it carefully yourself if switching to another distance metric.
|
|
"""
|
|
try:
|
|
from cassio.table import MetadataVectorCassandraTable
|
|
except (ImportError, ModuleNotFoundError):
|
|
raise ValueError(
|
|
"Could not import cassio python package. "
|
|
"Please install it with `pip install cassio`."
|
|
)
|
|
self.session = session
|
|
self.keyspace = keyspace
|
|
self.embedding = embedding
|
|
self.table_name = table_name
|
|
self.distance_metric = distance_metric
|
|
self.score_threshold = score_threshold
|
|
self.ttl_seconds = ttl_seconds
|
|
|
|
# The contract for this class has separate lookup and update:
|
|
# in order to spare some embedding calculations we cache them between
|
|
# the two calls.
|
|
# Note: each instance of this class has its own `_get_embedding` with
|
|
# its own lru.
|
|
@lru_cache(maxsize=CASSANDRA_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE)
|
|
def _cache_embedding(text: str) -> List[float]:
|
|
return self.embedding.embed_query(text=text)
|
|
|
|
self._get_embedding = _cache_embedding
|
|
self.embedding_dimension = self._get_embedding_dimension()
|
|
|
|
self.table = MetadataVectorCassandraTable(
|
|
session=self.session,
|
|
keyspace=self.keyspace,
|
|
table=self.table_name,
|
|
primary_key_type=["TEXT"],
|
|
vector_dimension=self.embedding_dimension,
|
|
ttl_seconds=self.ttl_seconds,
|
|
metadata_indexing=("allow", {"_llm_string_hash"}),
|
|
skip_provisioning=skip_provisioning,
|
|
)
|
|
|
|
def _get_embedding_dimension(self) -> int:
|
|
return len(self._get_embedding(text="This is a sample sentence."))
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
embedding_vector = self._get_embedding(text=prompt)
|
|
llm_string_hash = _hash(llm_string)
|
|
body = _dumps_generations(return_val)
|
|
metadata = {
|
|
"_prompt": prompt,
|
|
"_llm_string_hash": llm_string_hash,
|
|
}
|
|
row_id = f"{_hash(prompt)}-{llm_string_hash}"
|
|
#
|
|
self.table.put(
|
|
body_blob=body,
|
|
vector=embedding_vector,
|
|
row_id=row_id,
|
|
metadata=metadata,
|
|
)
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
hit_with_id = self.lookup_with_id(prompt, llm_string)
|
|
if hit_with_id is not None:
|
|
return hit_with_id[1]
|
|
else:
|
|
return None
|
|
|
|
def lookup_with_id(
|
|
self, prompt: str, llm_string: str
|
|
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
|
|
"""
|
|
Look up based on prompt and llm_string.
|
|
If there are hits, return (document_id, cached_entry)
|
|
"""
|
|
prompt_embedding: List[float] = self._get_embedding(text=prompt)
|
|
hits = list(
|
|
self.table.metric_ann_search(
|
|
vector=prompt_embedding,
|
|
metadata={"_llm_string_hash": _hash(llm_string)},
|
|
n=1,
|
|
metric=self.distance_metric,
|
|
metric_threshold=self.score_threshold,
|
|
)
|
|
)
|
|
if hits:
|
|
hit = hits[0]
|
|
generations = _loads_generations(hit["body_blob"])
|
|
if generations is not None:
|
|
# this protects against malformed cached items:
|
|
return (
|
|
hit["row_id"],
|
|
generations,
|
|
)
|
|
else:
|
|
return None
|
|
else:
|
|
return None
|
|
|
|
def lookup_with_id_through_llm(
|
|
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
|
|
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
|
|
llm_string = get_prompts(
|
|
{**llm.dict(), **{"stop": stop}},
|
|
[],
|
|
)[1]
|
|
return self.lookup_with_id(prompt, llm_string=llm_string)
|
|
|
|
def delete_by_document_id(self, document_id: str) -> None:
|
|
"""
|
|
Given this is a "similarity search" cache, an invalidation pattern
|
|
that makes sense is first a lookup to get an ID, and then deleting
|
|
with that ID. This is for the second step.
|
|
"""
|
|
self.table.delete(row_id=document_id)
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear the *whole* semantic cache."""
|
|
self.table.clear()
|
|
|
|
|
|
class FullMd5LLMCache(Base): # type: ignore
|
|
"""SQLite table for full LLM Cache (all generations)."""
|
|
|
|
__tablename__ = "full_md5_llm_cache"
|
|
id = Column(String, primary_key=True)
|
|
prompt_md5 = Column(String, index=True)
|
|
llm = Column(String, index=True)
|
|
idx = Column(Integer, index=True)
|
|
prompt = Column(String)
|
|
response = Column(String)
|
|
|
|
|
|
class SQLAlchemyMd5Cache(BaseCache):
|
|
"""Cache that uses SQAlchemy as a backend."""
|
|
|
|
def __init__(
|
|
self, engine: Engine, cache_schema: Type[FullMd5LLMCache] = FullMd5LLMCache
|
|
):
|
|
"""Initialize by creating all tables."""
|
|
self.engine = engine
|
|
self.cache_schema = cache_schema
|
|
self.cache_schema.metadata.create_all(self.engine)
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
rows = self._search_rows(prompt, llm_string)
|
|
if rows:
|
|
return [loads(row[0]) for row in rows]
|
|
return None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update based on prompt and llm_string."""
|
|
with Session(self.engine) as session, session.begin():
|
|
self._delete_previous(session, prompt, llm_string)
|
|
prompt_md5 = self.get_md5(prompt)
|
|
items = [
|
|
self.cache_schema(
|
|
id=str(uuid.uuid1()),
|
|
prompt=prompt,
|
|
prompt_md5=prompt_md5,
|
|
llm=llm_string,
|
|
response=dumps(gen),
|
|
idx=i,
|
|
)
|
|
for i, gen in enumerate(return_val)
|
|
]
|
|
for item in items:
|
|
session.merge(item)
|
|
|
|
def _delete_previous(self, session: Session, prompt: str, llm_string: str) -> None:
|
|
stmt = (
|
|
delete(self.cache_schema)
|
|
.where(self.cache_schema.prompt_md5 == self.get_md5(prompt)) # type: ignore
|
|
.where(self.cache_schema.llm == llm_string)
|
|
.where(self.cache_schema.prompt == prompt)
|
|
)
|
|
session.execute(stmt)
|
|
|
|
def _search_rows(self, prompt: str, llm_string: str) -> Sequence[Row]:
|
|
prompt_pd5 = self.get_md5(prompt)
|
|
stmt = (
|
|
select(self.cache_schema.response)
|
|
.where(self.cache_schema.prompt_md5 == prompt_pd5) # type: ignore
|
|
.where(self.cache_schema.llm == llm_string)
|
|
.where(self.cache_schema.prompt == prompt)
|
|
.order_by(self.cache_schema.idx)
|
|
)
|
|
with Session(self.engine) as session:
|
|
return session.execute(stmt).fetchall()
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear cache."""
|
|
with Session(self.engine) as session:
|
|
session.execute(self.cache_schema.delete())
|
|
|
|
@staticmethod
|
|
def get_md5(input_string: str) -> str:
|
|
return hashlib.md5(input_string.encode()).hexdigest()
|
|
|
|
|
|
ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME = "langchain_astradb_cache"
|
|
|
|
|
|
@deprecated(
|
|
since="0.0.28",
|
|
removal="0.2.0",
|
|
alternative_import="langchain_astradb.AstraDBCache",
|
|
)
|
|
class AstraDBCache(BaseCache):
|
|
@staticmethod
|
|
def _make_id(prompt: str, llm_string: str) -> str:
|
|
return f"{_hash(prompt)}#{_hash(llm_string)}"
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
collection_name: str = ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME,
|
|
token: Optional[str] = None,
|
|
api_endpoint: Optional[str] = None,
|
|
astra_db_client: Optional[AstraDB] = None,
|
|
async_astra_db_client: Optional[AsyncAstraDB] = None,
|
|
namespace: Optional[str] = None,
|
|
pre_delete_collection: bool = False,
|
|
setup_mode: SetupMode = SetupMode.SYNC,
|
|
):
|
|
"""
|
|
Cache that uses Astra DB as a backend.
|
|
|
|
It uses a single collection as a kv store
|
|
The lookup keys, combined in the _id of the documents, are:
|
|
- prompt, a string
|
|
- llm_string, a deterministic str representation of the model parameters.
|
|
(needed to prevent same-prompt-different-model collisions)
|
|
|
|
Args:
|
|
collection_name: name of the Astra DB collection to create/use.
|
|
token: API token for Astra DB usage.
|
|
api_endpoint: full URL to the API endpoint,
|
|
such as `https://<DB-ID>-us-east1.apps.astra.datastax.com`.
|
|
astra_db_client: *alternative to token+api_endpoint*,
|
|
you can pass an already-created 'astrapy.db.AstraDB' instance.
|
|
async_astra_db_client: *alternative to token+api_endpoint*,
|
|
you can pass an already-created 'astrapy.db.AsyncAstraDB' instance.
|
|
namespace: namespace (aka keyspace) where the
|
|
collection is created. Defaults to the database's "default namespace".
|
|
setup_mode: mode used to create the Astra DB collection (SYNC, ASYNC or
|
|
OFF).
|
|
pre_delete_collection: whether to delete the collection
|
|
before creating it. If False and the collection already exists,
|
|
the collection will be used as is.
|
|
"""
|
|
self.astra_env = _AstraDBCollectionEnvironment(
|
|
collection_name=collection_name,
|
|
token=token,
|
|
api_endpoint=api_endpoint,
|
|
astra_db_client=astra_db_client,
|
|
async_astra_db_client=async_astra_db_client,
|
|
namespace=namespace,
|
|
setup_mode=setup_mode,
|
|
pre_delete_collection=pre_delete_collection,
|
|
)
|
|
self.collection = self.astra_env.collection
|
|
self.async_collection = self.astra_env.async_collection
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
self.astra_env.ensure_db_setup()
|
|
doc_id = self._make_id(prompt, llm_string)
|
|
item = self.collection.find_one(
|
|
filter={
|
|
"_id": doc_id,
|
|
},
|
|
projection={
|
|
"body_blob": 1,
|
|
},
|
|
)["data"]["document"]
|
|
return _loads_generations(item["body_blob"]) if item is not None else None
|
|
|
|
async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
await self.astra_env.aensure_db_setup()
|
|
doc_id = self._make_id(prompt, llm_string)
|
|
item = (
|
|
await self.async_collection.find_one(
|
|
filter={
|
|
"_id": doc_id,
|
|
},
|
|
projection={
|
|
"body_blob": 1,
|
|
},
|
|
)
|
|
)["data"]["document"]
|
|
return _loads_generations(item["body_blob"]) if item is not None else None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
self.astra_env.ensure_db_setup()
|
|
doc_id = self._make_id(prompt, llm_string)
|
|
blob = _dumps_generations(return_val)
|
|
self.collection.upsert(
|
|
{
|
|
"_id": doc_id,
|
|
"body_blob": blob,
|
|
},
|
|
)
|
|
|
|
async def aupdate(
|
|
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
|
|
) -> None:
|
|
await self.astra_env.aensure_db_setup()
|
|
doc_id = self._make_id(prompt, llm_string)
|
|
blob = _dumps_generations(return_val)
|
|
await self.async_collection.upsert(
|
|
{
|
|
"_id": doc_id,
|
|
"body_blob": blob,
|
|
},
|
|
)
|
|
|
|
def delete_through_llm(
|
|
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
|
|
) -> None:
|
|
"""
|
|
A wrapper around `delete` with the LLM being passed.
|
|
In case the llm.invoke(prompt) calls have a `stop` param, you should
|
|
pass it here
|
|
"""
|
|
llm_string = get_prompts(
|
|
{**llm.dict(), **{"stop": stop}},
|
|
[],
|
|
)[1]
|
|
return self.delete(prompt, llm_string=llm_string)
|
|
|
|
async def adelete_through_llm(
|
|
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
|
|
) -> None:
|
|
"""
|
|
A wrapper around `adelete` with the LLM being passed.
|
|
In case the llm.invoke(prompt) calls have a `stop` param, you should
|
|
pass it here
|
|
"""
|
|
llm_string = (
|
|
await aget_prompts(
|
|
{**llm.dict(), **{"stop": stop}},
|
|
[],
|
|
)
|
|
)[1]
|
|
return await self.adelete(prompt, llm_string=llm_string)
|
|
|
|
def delete(self, prompt: str, llm_string: str) -> None:
|
|
"""Evict from cache if there's an entry."""
|
|
self.astra_env.ensure_db_setup()
|
|
doc_id = self._make_id(prompt, llm_string)
|
|
self.collection.delete_one(doc_id)
|
|
|
|
async def adelete(self, prompt: str, llm_string: str) -> None:
|
|
"""Evict from cache if there's an entry."""
|
|
await self.astra_env.aensure_db_setup()
|
|
doc_id = self._make_id(prompt, llm_string)
|
|
await self.async_collection.delete_one(doc_id)
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
self.astra_env.ensure_db_setup()
|
|
self.collection.clear()
|
|
|
|
async def aclear(self, **kwargs: Any) -> None:
|
|
await self.astra_env.aensure_db_setup()
|
|
await self.async_collection.clear()
|
|
|
|
|
|
ASTRA_DB_SEMANTIC_CACHE_DEFAULT_THRESHOLD = 0.85
|
|
ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME = "langchain_astradb_semantic_cache"
|
|
ASTRA_DB_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE = 16
|
|
|
|
|
|
_unset = ["unset"]
|
|
|
|
|
|
class _CachedAwaitable:
|
|
"""Caches the result of an awaitable so it can be awaited multiple times"""
|
|
|
|
def __init__(self, awaitable: Awaitable[Any]):
|
|
self.awaitable = awaitable
|
|
self.result = _unset
|
|
|
|
def __await__(self) -> Generator:
|
|
if self.result is _unset:
|
|
self.result = yield from self.awaitable.__await__()
|
|
return self.result
|
|
|
|
|
|
def _reawaitable(func: Callable) -> Callable:
|
|
"""Makes an async function result awaitable multiple times"""
|
|
|
|
@wraps(func)
|
|
def wrapper(*args: Any, **kwargs: Any) -> _CachedAwaitable:
|
|
return _CachedAwaitable(func(*args, **kwargs))
|
|
|
|
return wrapper
|
|
|
|
|
|
def _async_lru_cache(maxsize: int = 128, typed: bool = False) -> Callable:
|
|
"""Least-recently-used async cache decorator.
|
|
Equivalent to functools.lru_cache for async functions"""
|
|
|
|
def decorating_function(user_function: Callable) -> Callable:
|
|
return lru_cache(maxsize, typed)(_reawaitable(user_function))
|
|
|
|
return decorating_function
|
|
|
|
|
|
@deprecated(
|
|
since="0.0.28",
|
|
removal="0.2.0",
|
|
alternative_import="langchain_astradb.AstraDBSemanticCache",
|
|
)
|
|
class AstraDBSemanticCache(BaseCache):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
collection_name: str = ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME,
|
|
token: Optional[str] = None,
|
|
api_endpoint: Optional[str] = None,
|
|
astra_db_client: Optional[AstraDB] = None,
|
|
async_astra_db_client: Optional[AsyncAstraDB] = None,
|
|
namespace: Optional[str] = None,
|
|
setup_mode: SetupMode = SetupMode.SYNC,
|
|
pre_delete_collection: bool = False,
|
|
embedding: Embeddings,
|
|
metric: Optional[str] = None,
|
|
similarity_threshold: float = ASTRA_DB_SEMANTIC_CACHE_DEFAULT_THRESHOLD,
|
|
):
|
|
"""
|
|
Cache that uses Astra DB as a vector-store backend for semantic
|
|
(i.e. similarity-based) lookup.
|
|
|
|
It uses a single (vector) collection and can store
|
|
cached values from several LLMs, so the LLM's 'llm_string' is stored
|
|
in the document metadata.
|
|
|
|
You can choose the preferred similarity (or use the API default).
|
|
The default score threshold is tuned to the default metric.
|
|
Tune it carefully yourself if switching to another distance metric.
|
|
|
|
Args:
|
|
collection_name: name of the Astra DB collection to create/use.
|
|
token: API token for Astra DB usage.
|
|
api_endpoint: full URL to the API endpoint,
|
|
such as `https://<DB-ID>-us-east1.apps.astra.datastax.com`.
|
|
astra_db_client: *alternative to token+api_endpoint*,
|
|
you can pass an already-created 'astrapy.db.AstraDB' instance.
|
|
async_astra_db_client: *alternative to token+api_endpoint*,
|
|
you can pass an already-created 'astrapy.db.AsyncAstraDB' instance.
|
|
namespace: namespace (aka keyspace) where the
|
|
collection is created. Defaults to the database's "default namespace".
|
|
setup_mode: mode used to create the Astra DB collection (SYNC, ASYNC or
|
|
OFF).
|
|
pre_delete_collection: whether to delete the collection
|
|
before creating it. If False and the collection already exists,
|
|
the collection will be used as is.
|
|
embedding: Embedding provider for semantic encoding and search.
|
|
metric: the function to use for evaluating similarity of text embeddings.
|
|
Defaults to 'cosine' (alternatives: 'euclidean', 'dot_product')
|
|
similarity_threshold: the minimum similarity for accepting a
|
|
(semantic-search) match.
|
|
"""
|
|
self.embedding = embedding
|
|
self.metric = metric
|
|
self.similarity_threshold = similarity_threshold
|
|
self.collection_name = collection_name
|
|
|
|
# The contract for this class has separate lookup and update:
|
|
# in order to spare some embedding calculations we cache them between
|
|
# the two calls.
|
|
# Note: each instance of this class has its own `_get_embedding` with
|
|
# its own lru.
|
|
@lru_cache(maxsize=ASTRA_DB_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE)
|
|
def _cache_embedding(text: str) -> List[float]:
|
|
return self.embedding.embed_query(text=text)
|
|
|
|
self._get_embedding = _cache_embedding
|
|
|
|
@_async_lru_cache(maxsize=ASTRA_DB_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE)
|
|
async def _acache_embedding(text: str) -> List[float]:
|
|
return await self.embedding.aembed_query(text=text)
|
|
|
|
self._aget_embedding = _acache_embedding
|
|
|
|
embedding_dimension: Union[int, Awaitable[int], None] = None
|
|
if setup_mode == SetupMode.ASYNC:
|
|
embedding_dimension = self._aget_embedding_dimension()
|
|
elif setup_mode == SetupMode.SYNC:
|
|
embedding_dimension = self._get_embedding_dimension()
|
|
|
|
self.astra_env = _AstraDBCollectionEnvironment(
|
|
collection_name=collection_name,
|
|
token=token,
|
|
api_endpoint=api_endpoint,
|
|
astra_db_client=astra_db_client,
|
|
async_astra_db_client=async_astra_db_client,
|
|
namespace=namespace,
|
|
setup_mode=setup_mode,
|
|
pre_delete_collection=pre_delete_collection,
|
|
embedding_dimension=embedding_dimension,
|
|
metric=metric,
|
|
)
|
|
self.collection = self.astra_env.collection
|
|
self.async_collection = self.astra_env.async_collection
|
|
|
|
def _get_embedding_dimension(self) -> int:
|
|
return len(self._get_embedding(text="This is a sample sentence."))
|
|
|
|
async def _aget_embedding_dimension(self) -> int:
|
|
return len(await self._aget_embedding(text="This is a sample sentence."))
|
|
|
|
@staticmethod
|
|
def _make_id(prompt: str, llm_string: str) -> str:
|
|
return f"{_hash(prompt)}#{_hash(llm_string)}"
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
self.astra_env.ensure_db_setup()
|
|
doc_id = self._make_id(prompt, llm_string)
|
|
llm_string_hash = _hash(llm_string)
|
|
embedding_vector = self._get_embedding(text=prompt)
|
|
body = _dumps_generations(return_val)
|
|
#
|
|
self.collection.upsert(
|
|
{
|
|
"_id": doc_id,
|
|
"body_blob": body,
|
|
"llm_string_hash": llm_string_hash,
|
|
"$vector": embedding_vector,
|
|
}
|
|
)
|
|
|
|
async def aupdate(
|
|
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
|
|
) -> None:
|
|
await self.astra_env.aensure_db_setup()
|
|
doc_id = self._make_id(prompt, llm_string)
|
|
llm_string_hash = _hash(llm_string)
|
|
embedding_vector = await self._aget_embedding(text=prompt)
|
|
body = _dumps_generations(return_val)
|
|
#
|
|
await self.async_collection.upsert(
|
|
{
|
|
"_id": doc_id,
|
|
"body_blob": body,
|
|
"llm_string_hash": llm_string_hash,
|
|
"$vector": embedding_vector,
|
|
}
|
|
)
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
hit_with_id = self.lookup_with_id(prompt, llm_string)
|
|
if hit_with_id is not None:
|
|
return hit_with_id[1]
|
|
else:
|
|
return None
|
|
|
|
async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
hit_with_id = await self.alookup_with_id(prompt, llm_string)
|
|
if hit_with_id is not None:
|
|
return hit_with_id[1]
|
|
else:
|
|
return None
|
|
|
|
def lookup_with_id(
|
|
self, prompt: str, llm_string: str
|
|
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
|
|
"""
|
|
Look up based on prompt and llm_string.
|
|
If there are hits, return (document_id, cached_entry) for the top hit
|
|
"""
|
|
self.astra_env.ensure_db_setup()
|
|
prompt_embedding: List[float] = self._get_embedding(text=prompt)
|
|
llm_string_hash = _hash(llm_string)
|
|
|
|
hit = self.collection.vector_find_one(
|
|
vector=prompt_embedding,
|
|
filter={
|
|
"llm_string_hash": llm_string_hash,
|
|
},
|
|
fields=["body_blob", "_id"],
|
|
include_similarity=True,
|
|
)
|
|
|
|
if hit is None or hit["$similarity"] < self.similarity_threshold:
|
|
return None
|
|
else:
|
|
generations = _loads_generations(hit["body_blob"])
|
|
if generations is not None:
|
|
# this protects against malformed cached items:
|
|
return hit["_id"], generations
|
|
else:
|
|
return None
|
|
|
|
async def alookup_with_id(
|
|
self, prompt: str, llm_string: str
|
|
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
|
|
"""
|
|
Look up based on prompt and llm_string.
|
|
If there are hits, return (document_id, cached_entry) for the top hit
|
|
"""
|
|
await self.astra_env.aensure_db_setup()
|
|
prompt_embedding: List[float] = await self._aget_embedding(text=prompt)
|
|
llm_string_hash = _hash(llm_string)
|
|
|
|
hit = await self.async_collection.vector_find_one(
|
|
vector=prompt_embedding,
|
|
filter={
|
|
"llm_string_hash": llm_string_hash,
|
|
},
|
|
fields=["body_blob", "_id"],
|
|
include_similarity=True,
|
|
)
|
|
|
|
if hit is None or hit["$similarity"] < self.similarity_threshold:
|
|
return None
|
|
else:
|
|
generations = _loads_generations(hit["body_blob"])
|
|
if generations is not None:
|
|
# this protects against malformed cached items:
|
|
return hit["_id"], generations
|
|
else:
|
|
return None
|
|
|
|
def lookup_with_id_through_llm(
|
|
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
|
|
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
|
|
llm_string = get_prompts(
|
|
{**llm.dict(), **{"stop": stop}},
|
|
[],
|
|
)[1]
|
|
return self.lookup_with_id(prompt, llm_string=llm_string)
|
|
|
|
async def alookup_with_id_through_llm(
|
|
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
|
|
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
|
|
llm_string = (
|
|
await aget_prompts(
|
|
{**llm.dict(), **{"stop": stop}},
|
|
[],
|
|
)
|
|
)[1]
|
|
return await self.alookup_with_id(prompt, llm_string=llm_string)
|
|
|
|
def delete_by_document_id(self, document_id: str) -> None:
|
|
"""
|
|
Given this is a "similarity search" cache, an invalidation pattern
|
|
that makes sense is first a lookup to get an ID, and then deleting
|
|
with that ID. This is for the second step.
|
|
"""
|
|
self.astra_env.ensure_db_setup()
|
|
self.collection.delete_one(document_id)
|
|
|
|
async def adelete_by_document_id(self, document_id: str) -> None:
|
|
"""
|
|
Given this is a "similarity search" cache, an invalidation pattern
|
|
that makes sense is first a lookup to get an ID, and then deleting
|
|
with that ID. This is for the second step.
|
|
"""
|
|
await self.astra_env.aensure_db_setup()
|
|
await self.async_collection.delete_one(document_id)
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
self.astra_env.ensure_db_setup()
|
|
self.collection.clear()
|
|
|
|
async def aclear(self, **kwargs: Any) -> None:
|
|
await self.astra_env.aensure_db_setup()
|
|
await self.async_collection.clear()
|
|
|
|
|
|
class AzureCosmosDBSemanticCache(BaseCache):
|
|
"""Cache that uses Cosmos DB Mongo vCore vector-store backend"""
|
|
|
|
DEFAULT_DATABASE_NAME = "CosmosMongoVCoreCacheDB"
|
|
DEFAULT_COLLECTION_NAME = "CosmosMongoVCoreCacheColl"
|
|
|
|
def __init__(
|
|
self,
|
|
cosmosdb_connection_string: str,
|
|
database_name: str,
|
|
collection_name: str,
|
|
embedding: Embeddings,
|
|
*,
|
|
cosmosdb_client: Optional[Any] = None,
|
|
num_lists: int = 100,
|
|
similarity: CosmosDBSimilarityType = CosmosDBSimilarityType.COS,
|
|
kind: CosmosDBVectorSearchType = CosmosDBVectorSearchType.VECTOR_IVF,
|
|
dimensions: int = 1536,
|
|
m: int = 16,
|
|
ef_construction: int = 64,
|
|
ef_search: int = 40,
|
|
score_threshold: Optional[float] = None,
|
|
application_name: str = "LANGCHAIN_CACHING_PYTHON",
|
|
):
|
|
"""
|
|
Args:
|
|
cosmosdb_connection_string: Cosmos DB Mongo vCore connection string
|
|
cosmosdb_client: Cosmos DB Mongo vCore client
|
|
embedding (Embedding): Embedding provider for semantic encoding and search.
|
|
database_name: Database name for the CosmosDBMongoVCoreSemanticCache
|
|
collection_name: Collection name for the CosmosDBMongoVCoreSemanticCache
|
|
num_lists: This integer is the number of clusters that the
|
|
inverted file (IVF) index uses to group the vector data.
|
|
We recommend that numLists is set to documentCount/1000
|
|
for up to 1 million documents and to sqrt(documentCount)
|
|
for more than 1 million documents.
|
|
Using a numLists value of 1 is akin to performing
|
|
brute-force search, which has limited performance
|
|
dimensions: Number of dimensions for vector similarity.
|
|
The maximum number of supported dimensions is 2000
|
|
similarity: Similarity metric to use with the IVF index.
|
|
|
|
Possible options are:
|
|
- CosmosDBSimilarityType.COS (cosine distance),
|
|
- CosmosDBSimilarityType.L2 (Euclidean distance), and
|
|
- CosmosDBSimilarityType.IP (inner product).
|
|
kind: Type of vector index to create.
|
|
Possible options are:
|
|
- vector-ivf
|
|
- vector-hnsw: available as a preview feature only,
|
|
to enable visit https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/preview-features
|
|
m: The max number of connections per layer (16 by default, minimum
|
|
value is 2, maximum value is 100). Higher m is suitable for datasets
|
|
with high dimensionality and/or high accuracy requirements.
|
|
ef_construction: the size of the dynamic candidate list for constructing
|
|
the graph (64 by default, minimum value is 4, maximum
|
|
value is 1000). Higher ef_construction will result in
|
|
better index quality and higher accuracy, but it will
|
|
also increase the time required to build the index.
|
|
ef_construction has to be at least 2 * m
|
|
ef_search: The size of the dynamic candidate list for search
|
|
(40 by default). A higher value provides better
|
|
recall at the cost of speed.
|
|
score_threshold: Maximum score used to filter the vector search documents.
|
|
application_name: Application name for the client for tracking and logging
|
|
"""
|
|
|
|
self._validate_enum_value(similarity, CosmosDBSimilarityType)
|
|
self._validate_enum_value(kind, CosmosDBVectorSearchType)
|
|
|
|
if not cosmosdb_connection_string:
|
|
raise ValueError(" CosmosDB connection string can be empty.")
|
|
|
|
self.cosmosdb_connection_string = cosmosdb_connection_string
|
|
self.cosmosdb_client = cosmosdb_client
|
|
self.embedding = embedding
|
|
self.database_name = database_name or self.DEFAULT_DATABASE_NAME
|
|
self.collection_name = collection_name or self.DEFAULT_COLLECTION_NAME
|
|
self.num_lists = num_lists
|
|
self.dimensions = dimensions
|
|
self.similarity = similarity
|
|
self.kind = kind
|
|
self.m = m
|
|
self.ef_construction = ef_construction
|
|
self.ef_search = ef_search
|
|
self.score_threshold = score_threshold
|
|
self._cache_dict: Dict[str, AzureCosmosDBVectorSearch] = {}
|
|
self.application_name = application_name
|
|
|
|
def _index_name(self, llm_string: str) -> str:
|
|
hashed_index = _hash(llm_string)
|
|
return f"cache:{hashed_index}"
|
|
|
|
def _get_llm_cache(self, llm_string: str) -> AzureCosmosDBVectorSearch:
|
|
index_name = self._index_name(llm_string)
|
|
|
|
namespace = self.database_name + "." + self.collection_name
|
|
|
|
# return vectorstore client for the specific llm string
|
|
if index_name in self._cache_dict:
|
|
return self._cache_dict[index_name]
|
|
|
|
# create new vectorstore client for the specific llm string
|
|
if self.cosmosdb_client:
|
|
collection = self.cosmosdb_client[self.database_name][self.collection_name]
|
|
self._cache_dict[index_name] = AzureCosmosDBVectorSearch(
|
|
collection=collection,
|
|
embedding=self.embedding,
|
|
index_name=index_name,
|
|
)
|
|
else:
|
|
self._cache_dict[
|
|
index_name
|
|
] = AzureCosmosDBVectorSearch.from_connection_string(
|
|
connection_string=self.cosmosdb_connection_string,
|
|
namespace=namespace,
|
|
embedding=self.embedding,
|
|
index_name=index_name,
|
|
application_name=self.application_name,
|
|
)
|
|
|
|
# create index for the vectorstore
|
|
vectorstore = self._cache_dict[index_name]
|
|
if not vectorstore.index_exists():
|
|
vectorstore.create_index(
|
|
self.num_lists,
|
|
self.dimensions,
|
|
self.similarity,
|
|
self.kind,
|
|
self.m,
|
|
self.ef_construction,
|
|
)
|
|
|
|
return vectorstore
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
llm_cache = self._get_llm_cache(llm_string)
|
|
generations: List = []
|
|
# Read from a Hash
|
|
results = llm_cache.similarity_search(
|
|
query=prompt,
|
|
k=1,
|
|
kind=self.kind,
|
|
ef_search=self.ef_search,
|
|
score_threshold=self.score_threshold, # type: ignore[arg-type]
|
|
)
|
|
if results:
|
|
for document in results:
|
|
try:
|
|
generations.extend(loads(document.metadata["return_val"]))
|
|
except Exception:
|
|
logger.warning(
|
|
"Retrieving a cache value that could not be deserialized "
|
|
"properly. This is likely due to the cache being in an "
|
|
"older format. Please recreate your cache to avoid this "
|
|
"error."
|
|
)
|
|
# In a previous life we stored the raw text directly
|
|
# in the table, so assume it's in that format.
|
|
generations.extend(
|
|
_load_generations_from_json(document.metadata["return_val"])
|
|
)
|
|
return generations if generations else None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
for gen in return_val:
|
|
if not isinstance(gen, Generation):
|
|
raise ValueError(
|
|
"CosmosDBMongoVCoreSemanticCache only supports caching of "
|
|
f"normal LLM generations, got {type(gen)}"
|
|
)
|
|
|
|
llm_cache = self._get_llm_cache(llm_string)
|
|
metadata = {
|
|
"llm_string": llm_string,
|
|
"prompt": prompt,
|
|
"return_val": dumps([g for g in return_val]),
|
|
}
|
|
llm_cache.add_texts(texts=[prompt], metadatas=[metadata])
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear semantic cache for a given llm_string."""
|
|
index_name = self._index_name(kwargs["llm_string"])
|
|
if index_name in self._cache_dict:
|
|
self._cache_dict[index_name].get_collection().delete_many({})
|
|
# self._cache_dict[index_name].clear_collection()
|
|
|
|
@staticmethod
|
|
def _validate_enum_value(value: Any, enum_type: Type[Enum]) -> None:
|
|
if not isinstance(value, enum_type):
|
|
raise ValueError(f"Invalid enum value: {value}. Expected {enum_type}.")
|
|
|
|
|
|
class OpenSearchSemanticCache(BaseCache):
|
|
"""Cache that uses OpenSearch vector store backend"""
|
|
|
|
def __init__(
|
|
self, opensearch_url: str, embedding: Embeddings, score_threshold: float = 0.2
|
|
):
|
|
"""
|
|
Args:
|
|
opensearch_url (str): URL to connect to OpenSearch.
|
|
embedding (Embedding): Embedding provider for semantic encoding and search.
|
|
score_threshold (float, 0.2):
|
|
Example:
|
|
.. code-block:: python
|
|
import langchain
|
|
from langchain.cache import OpenSearchSemanticCache
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
langchain.llm_cache = OpenSearchSemanticCache(
|
|
opensearch_url="http//localhost:9200",
|
|
embedding=OpenAIEmbeddings()
|
|
)
|
|
"""
|
|
self._cache_dict: Dict[str, OpenSearchVectorStore] = {}
|
|
self.opensearch_url = opensearch_url
|
|
self.embedding = embedding
|
|
self.score_threshold = score_threshold
|
|
|
|
def _index_name(self, llm_string: str) -> str:
|
|
hashed_index = _hash(llm_string)
|
|
return f"cache_{hashed_index}"
|
|
|
|
def _get_llm_cache(self, llm_string: str) -> OpenSearchVectorStore:
|
|
index_name = self._index_name(llm_string)
|
|
|
|
# return vectorstore client for the specific llm string
|
|
if index_name in self._cache_dict:
|
|
return self._cache_dict[index_name]
|
|
|
|
# create new vectorstore client for the specific llm string
|
|
self._cache_dict[index_name] = OpenSearchVectorStore(
|
|
opensearch_url=self.opensearch_url,
|
|
index_name=index_name,
|
|
embedding_function=self.embedding,
|
|
)
|
|
|
|
# create index for the vectorstore
|
|
vectorstore = self._cache_dict[index_name]
|
|
if not vectorstore.index_exists():
|
|
_embedding = self.embedding.embed_query(text="test")
|
|
vectorstore.create_index(len(_embedding), index_name)
|
|
return vectorstore
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
llm_cache = self._get_llm_cache(llm_string)
|
|
generations: List = []
|
|
# Read from a Hash
|
|
results = llm_cache.similarity_search(
|
|
query=prompt,
|
|
k=1,
|
|
score_threshold=self.score_threshold,
|
|
)
|
|
if results:
|
|
for document in results:
|
|
try:
|
|
generations.extend(loads(document.metadata["return_val"]))
|
|
except Exception:
|
|
logger.warning(
|
|
"Retrieving a cache value that could not be deserialized "
|
|
"properly. This is likely due to the cache being in an "
|
|
"older format. Please recreate your cache to avoid this "
|
|
"error."
|
|
)
|
|
|
|
generations.extend(
|
|
_load_generations_from_json(document.metadata["return_val"])
|
|
)
|
|
return generations if generations else None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
for gen in return_val:
|
|
if not isinstance(gen, Generation):
|
|
raise ValueError(
|
|
"OpenSearchSemanticCache only supports caching of "
|
|
f"normal LLM generations, got {type(gen)}"
|
|
)
|
|
llm_cache = self._get_llm_cache(llm_string)
|
|
metadata = {
|
|
"llm_string": llm_string,
|
|
"prompt": prompt,
|
|
"return_val": dumps([g for g in return_val]),
|
|
}
|
|
llm_cache.add_texts(texts=[prompt], metadatas=[metadata])
|
|
|
|
def clear(self, **kwargs: Any) -> None:
|
|
"""Clear semantic cache for a given llm_string."""
|
|
index_name = self._index_name(kwargs["llm_string"])
|
|
if index_name in self._cache_dict:
|
|
self._cache_dict[index_name].delete_index(index_name=index_name)
|
|
del self._cache_dict[index_name]
|