langchain/libs/community/langchain_community/chat_models/tongyi.py
Shuai Liu 4b53440e70
Upgrades the Tongyi LLM and ChatTongyi Model (#14793)
- **Description:** fixes and upgrades for the Tongyi LLM and ChatTongyi
Model
      - Fixed typos; it should be `Tongyi`, not `OpenAI`.
- Fixed a bug in `stream_generate_with_retry`; it's a real stream
generator now.
- Fixed a bug in `validate_environment`; the `dashscope_api_key` should
be properly handled when set by environment variables or initialization
parameters.
- Changed the `dashscope` response to incremental output by setting the
parameter `incremental_output`, which eliminates the need for the
prefix-removal trick.
      - Removed some unused parameters, like `n`, `prefix_messages`.
      - Added `_stream` method.
- Added async methods support, such as `_astream`, `_agenerate`,
`_abatch`.
  - **Dependencies:** No new dependencies.
  - **Tag maintainer:** @hwchase17 

> PS: Some may be confused about the terms `dashscope`, `tongyi`, and
`Qwen`:
> - `dashscope`: A platform to deploy LLMs and provide APIs to invoke
the LLM.
> - `tongyi`: A brand name or overall term about Alibaba Cloud's LLM/AI.
> - `Qwen`: An LLM that is open-sourced and deployed in `dashscope`.
> 
> We use the `dashscope` SDK to interact with the `tongyi`-`Qwen` LLM.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-29 12:06:12 -08:00

419 lines
14 KiB
Python

from __future__ import annotations
import asyncio
import functools
import logging
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
Union,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
)
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
ChatResult,
)
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.utils import get_from_dict_or_env
from requests.exceptions import HTTPError
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain_community.llms.tongyi import check_response
logger = logging.getLogger(__name__)
def convert_dict_to_message(
_dict: Mapping[str, Any], is_chunk: bool = False
) -> Union[BaseMessage, BaseMessageChunk]:
role = _dict["role"]
content = _dict["content"]
if role == "user":
return (
HumanMessageChunk(content=content)
if is_chunk
else HumanMessage(content=content)
)
elif role == "assistant":
return (
AIMessageChunk(content=content) if is_chunk else AIMessage(content=content)
)
elif role == "system":
return (
SystemMessageChunk(content=content)
if is_chunk
else SystemMessage(content=content)
)
else:
return (
ChatMessageChunk(role=role, content=content)
if is_chunk
else ChatMessage(role=role, content=content)
)
def convert_message_chunk_to_message(message_chunk: BaseMessageChunk) -> BaseMessage:
if isinstance(message_chunk, HumanMessageChunk):
return HumanMessage(content=message_chunk.content)
elif isinstance(message_chunk, AIMessageChunk):
return AIMessage(content=message_chunk.content)
elif isinstance(message_chunk, SystemMessageChunk):
return SystemMessage(content=message_chunk.content)
elif isinstance(message_chunk, ChatMessageChunk):
return ChatMessage(role=message_chunk.role, content=message_chunk.content)
else:
raise TypeError(f"Got unknown type {message_chunk}")
def convert_message_to_dict(message: BaseMessage) -> dict:
"""Convert a message to a dict."""
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
else:
raise TypeError(f"Got unknown type {message}")
return message_dict
def _create_retry_decorator(llm: ChatTongyi) -> Callable[[Any], Any]:
min_seconds = 1
max_seconds = 4
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterward
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(HTTPError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
class ChatTongyi(BaseChatModel):
"""Alibaba Tongyi Qwen chat models API.
To use, you should have the ``dashscope`` python package installed,
and set env ``DASHSCOPE_API_KEY`` with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.chat_models import Tongyi
Tongyi_chat = ChatTongyi()
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
client: Any #: :meta private:
model_name: str = Field(default="qwen-turbo", alias="model")
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
top_p: float = 0.8
"""Total probability mass of tokens to consider at each step."""
dashscope_api_key: Optional[str] = None
"""Dashscope api key provide by Alibaba Cloud."""
streaming: bool = False
"""Whether to stream the results or not."""
max_retries: int = 10
"""Maximum number of retries to make when generating."""
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "tongyi"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["dashscope_api_key"] = get_from_dict_or_env(
values, "dashscope_api_key", "DASHSCOPE_API_KEY"
)
try:
import dashscope
except ImportError:
raise ImportError(
"Could not import dashscope python package. "
"Please install it with `pip install dashscope --upgrade`."
)
try:
values["client"] = dashscope.Generation
except AttributeError:
raise ValueError(
"`dashscope` has no `Generation` attribute, this is likely "
"due to an old version of the dashscope package. Try upgrading it "
"with `pip install --upgrade dashscope`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Tongyi Qwen API."""
return {
"model": self.model_name,
"top_p": self.top_p,
"api_key": self.dashscope_api_key,
"result_format": "message",
**self.model_kwargs,
}
def completion_with_retry(self, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(self)
@retry_decorator
def _completion_with_retry(**_kwargs: Any) -> Any:
resp = self.client.call(**_kwargs)
return check_response(resp)
return _completion_with_retry(**kwargs)
def stream_completion_with_retry(self, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(self)
@retry_decorator
def _stream_completion_with_retry(**_kwargs: Any) -> Any:
responses = self.client.call(**_kwargs)
for resp in responses:
yield check_response(resp)
return _stream_completion_with_retry(**kwargs)
async def astream_completion_with_retry(self, **kwargs: Any) -> Any:
"""Because the dashscope SDK doesn't provide an async API,
we wrap `stream_generate_with_retry` with an async generator."""
class _AioTongyiGenerator:
def __init__(self, generator: Any):
self.generator = generator
def __aiter__(self) -> AsyncIterator[Any]:
return self
async def __anext__(self) -> Any:
value = await asyncio.get_running_loop().run_in_executor(
None, self._safe_next
)
if value is not None:
return value
else:
raise StopAsyncIteration
def _safe_next(self) -> Any:
try:
return next(self.generator)
except StopIteration:
return None
async for chunk in _AioTongyiGenerator(
generator=self.stream_completion_with_retry(**kwargs)
):
yield chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
generations = []
if self.streaming:
generation: Optional[ChatGenerationChunk] = None
for chunk in self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
generations.append(self._chunk_to_generation(generation))
else:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, **kwargs
)
resp = self.completion_with_retry(**params)
generations.append(
ChatGeneration(**self._chat_generation_from_qwen_resp(resp))
)
return ChatResult(
generations=generations,
llm_output={
"model_name": self.model_name,
},
)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
generations = []
if self.streaming:
generation: Optional[ChatGenerationChunk] = None
async for chunk in self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
generations.append(self._chunk_to_generation(generation))
else:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, **kwargs
)
resp = await asyncio.get_running_loop().run_in_executor(
None,
functools.partial(
self.completion_with_retry, **{"run_manager": run_manager, **params}
),
)
generations.append(
ChatGeneration(**self._chat_generation_from_qwen_resp(resp))
)
return ChatResult(
generations=generations,
llm_output={
"model_name": self.model_name,
},
)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, stream=True, **kwargs
)
for stream_resp in self.stream_completion_with_retry(**params):
chunk = ChatGenerationChunk(
**self._chat_generation_from_qwen_resp(stream_resp, is_chunk=True)
)
yield chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, stream=True, **kwargs
)
async for stream_resp in self.astream_completion_with_retry(**params):
chunk = ChatGenerationChunk(
**self._chat_generation_from_qwen_resp(stream_resp, is_chunk=True)
)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
def _invocation_params(
self, messages: List[BaseMessage], stop: Any, **kwargs: Any
) -> Dict[str, Any]:
params = {**self._default_params, **kwargs}
if stop is not None:
params["stop"] = stop
if params.get("stream"):
params["incremental_output"] = True
message_dicts = [convert_message_to_dict(m) for m in messages]
# According to the docs, the last message should be a `user` message
if message_dicts[-1]["role"] != "user":
raise ValueError("Last message should be user message.")
# And the `system` message should be the first message if present
system_message_indices = [
i for i, m in enumerate(message_dicts) if m["role"] == "system"
]
if len(system_message_indices) != 1 or system_message_indices[0] != 0:
raise ValueError("System message can only be the first message.")
params["messages"] = message_dicts
return params
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
if llm_outputs[0] is None:
return {}
return llm_outputs[0]
@staticmethod
def _chat_generation_from_qwen_resp(
resp: Any, is_chunk: bool = False
) -> Dict[str, Any]:
choice = resp["output"]["choices"][0]
message = convert_dict_to_message(choice["message"], is_chunk=is_chunk)
return dict(
message=message,
generation_info=dict(
finish_reason=choice["finish_reason"],
request_id=resp["request_id"],
token_usage=dict(resp["usage"]),
),
)
@staticmethod
def _chunk_to_generation(chunk: ChatGenerationChunk) -> ChatGeneration:
return ChatGeneration(
message=convert_message_chunk_to_message(chunk.message),
generation_info=chunk.generation_info,
)