langchain/libs/community/langchain_community/chat_models/huggingface.py
Jacob Lee 1b01ee0e3c
community[minor]: add hf chat wrapper (#14736)
Builds on #14040 with community refactor merged and notebook updated.

Note that with this refactor, models will be imported from
`langchain_community.chat_models.huggingface` rather than the main
`langchain` repo.

---------

Signed-off-by: harupy <17039389+harupy@users.noreply.github.com>
Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
Signed-off-by: Yuchen Liang <yuchenl3@andrew.cmu.edu>
Co-authored-by: Andrew Reed <andrew.reed.r@gmail.com>
Co-authored-by: Andrew Reed <areed1242@gmail.com>
Co-authored-by: A-Roucher <aymeric.roucher@gmail.com>
Co-authored-by: Aymeric Roucher <69208727+A-Roucher@users.noreply.github.com>
2023-12-21 12:28:30 -05:00

167 lines
5.4 KiB
Python

"""Hugging Face Chat Wrapper."""
from typing import Any, List, Optional, Union
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import (
ChatGeneration,
ChatResult,
LLMResult,
)
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_community.llms.huggingface_hub import HuggingFaceHub
from langchain_community.llms.huggingface_text_gen_inference import (
HuggingFaceTextGenInference,
)
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful, and honest assistant."""
class ChatHuggingFace(BaseChatModel):
"""
Wrapper for using Hugging Face LLM's as ChatModels.
Works with `HuggingFaceTextGenInference`, `HuggingFaceEndpoint`,
and `HuggingFaceHub` LLMs.
Upon instantiating this class, the model_id is resolved from the url
provided to the LLM, and the appropriate tokenizer is loaded from
the HuggingFace Hub.
Adapted from: https://python.langchain.com/docs/integrations/chat/llama2_chat
"""
llm: Union[HuggingFaceTextGenInference, HuggingFaceEndpoint, HuggingFaceHub]
system_message: SystemMessage = SystemMessage(content=DEFAULT_SYSTEM_PROMPT)
tokenizer: Any = None
model_id: str = None # type: ignore
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
from transformers import AutoTokenizer
self._resolve_model_id()
self.tokenizer = (
AutoTokenizer.from_pretrained(self.model_id)
if self.tokenizer is None
else self.tokenizer
)
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
llm_input = self._to_chat_prompt(messages)
llm_result = self.llm._generate(
prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs
)
return self._to_chat_result(llm_result)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
llm_input = self._to_chat_prompt(messages)
llm_result = await self.llm._agenerate(
prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs
)
return self._to_chat_result(llm_result)
def _to_chat_prompt(
self,
messages: List[BaseMessage],
) -> str:
"""Convert a list of messages into a prompt format expected by wrapped LLM."""
if not messages:
raise ValueError("at least one HumanMessage must be provided")
if not isinstance(messages[-1], HumanMessage):
raise ValueError("last message must be a HumanMessage")
messages_dicts = [self._to_chatml_format(m) for m in messages]
return self.tokenizer.apply_chat_template(
messages_dicts, tokenize=False, add_generation_prompt=True
)
def _to_chatml_format(self, message: BaseMessage) -> dict:
"""Convert LangChain message to ChatML format."""
if isinstance(message, SystemMessage):
role = "system"
elif isinstance(message, AIMessage):
role = "assistant"
elif isinstance(message, HumanMessage):
role = "user"
else:
raise ValueError(f"Unknown message type: {type(message)}")
return {"role": role, "content": message.content}
@staticmethod
def _to_chat_result(llm_result: LLMResult) -> ChatResult:
chat_generations = []
for g in llm_result.generations[0]:
chat_generation = ChatGeneration(
message=AIMessage(content=g.text), generation_info=g.generation_info
)
chat_generations.append(chat_generation)
return ChatResult(
generations=chat_generations, llm_output=llm_result.llm_output
)
def _resolve_model_id(self) -> None:
"""Resolve the model_id from the LLM's inference_server_url"""
from huggingface_hub import list_inference_endpoints
available_endpoints = list_inference_endpoints("*")
if isinstance(self.llm, HuggingFaceTextGenInference):
endpoint_url = self.llm.inference_server_url
elif isinstance(self.llm, HuggingFaceEndpoint):
endpoint_url = self.llm.endpoint_url
elif isinstance(self.llm, HuggingFaceHub):
# no need to look up model_id for HuggingFaceHub LLM
self.model_id = self.llm.repo_id
return
else:
raise ValueError(f"Unknown LLM type: {type(self.llm)}")
for endpoint in available_endpoints:
if endpoint.url == endpoint_url:
self.model_id = endpoint.repository
if not self.model_id:
raise ValueError(
"Failed to resolve model_id"
f"Could not find model id for inference server provided: {endpoint_url}"
"Make sure that your Hugging Face token has access to the endpoint."
)
@property
def _llm_type(self) -> str:
return "huggingface-chat-wrapper"