mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
170 lines
5.9 KiB
Python
170 lines
5.9 KiB
Python
import json
|
|
from typing import Any, Dict, List, Optional, cast
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.chat_models import SimpleChatModel
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.pydantic_v1 import SecretStr, validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
from langchain_community.llms.azureml_endpoint import (
|
|
AzureMLEndpointClient,
|
|
ContentFormatterBase,
|
|
)
|
|
|
|
|
|
class LlamaContentFormatter(ContentFormatterBase):
|
|
"""Content formatter for `LLaMA`."""
|
|
|
|
SUPPORTED_ROLES: List[str] = ["user", "assistant", "system"]
|
|
|
|
@staticmethod
|
|
def _convert_message_to_dict(message: BaseMessage) -> Dict:
|
|
"""Converts message to a dict according to role"""
|
|
content = cast(str, message.content)
|
|
if isinstance(message, HumanMessage):
|
|
return {
|
|
"role": "user",
|
|
"content": ContentFormatterBase.escape_special_characters(content),
|
|
}
|
|
elif isinstance(message, AIMessage):
|
|
return {
|
|
"role": "assistant",
|
|
"content": ContentFormatterBase.escape_special_characters(content),
|
|
}
|
|
elif isinstance(message, SystemMessage):
|
|
return {
|
|
"role": "system",
|
|
"content": ContentFormatterBase.escape_special_characters(content),
|
|
}
|
|
elif (
|
|
isinstance(message, ChatMessage)
|
|
and message.role in LlamaContentFormatter.SUPPORTED_ROLES
|
|
):
|
|
return {
|
|
"role": message.role,
|
|
"content": ContentFormatterBase.escape_special_characters(content),
|
|
}
|
|
else:
|
|
supported = ",".join(
|
|
[role for role in LlamaContentFormatter.SUPPORTED_ROLES]
|
|
)
|
|
raise ValueError(
|
|
f"""Received unsupported role.
|
|
Supported roles for the LLaMa Foundation Model: {supported}"""
|
|
)
|
|
|
|
def _format_request_payload(
|
|
self, messages: List[BaseMessage], model_kwargs: Dict
|
|
) -> bytes:
|
|
chat_messages = [
|
|
LlamaContentFormatter._convert_message_to_dict(message)
|
|
for message in messages
|
|
]
|
|
prompt = json.dumps(
|
|
{"input_data": {"input_string": chat_messages, "parameters": model_kwargs}}
|
|
)
|
|
return self.format_request_payload(prompt=prompt, model_kwargs=model_kwargs)
|
|
|
|
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
|
"""Formats the request according to the chosen api"""
|
|
return str.encode(prompt)
|
|
|
|
def format_response_payload(self, output: bytes) -> str:
|
|
"""Formats response"""
|
|
return json.loads(output)["output"]
|
|
|
|
|
|
class AzureMLChatOnlineEndpoint(SimpleChatModel):
|
|
"""`AzureML` Chat models API.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
azure_chat = AzureMLChatOnlineEndpoint(
|
|
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
|
|
endpoint_api_key="my-api-key",
|
|
content_formatter=content_formatter,
|
|
)
|
|
"""
|
|
|
|
endpoint_url: str = ""
|
|
"""URL of pre-existing Endpoint. Should be passed to constructor or specified as
|
|
env var `AZUREML_ENDPOINT_URL`."""
|
|
|
|
endpoint_api_key: SecretStr = convert_to_secret_str("")
|
|
"""Authentication Key for Endpoint. Should be passed to constructor or specified as
|
|
env var `AZUREML_ENDPOINT_API_KEY`."""
|
|
|
|
http_client: Any = None #: :meta private:
|
|
|
|
content_formatter: Any = None
|
|
"""The content formatter that provides an input and output
|
|
transform function to handle formats between the LLM and
|
|
the endpoint"""
|
|
|
|
model_kwargs: Optional[dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
@validator("http_client", always=True, allow_reuse=True)
|
|
@classmethod
|
|
def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient:
|
|
"""Validate that api key and python package exist in environment."""
|
|
values["endpoint_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY")
|
|
)
|
|
endpoint_url = get_from_dict_or_env(
|
|
values, "endpoint_url", "AZUREML_ENDPOINT_URL"
|
|
)
|
|
http_client = AzureMLEndpointClient(
|
|
endpoint_url, values["endpoint_api_key"].get_secret_value()
|
|
)
|
|
return http_client
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
return {
|
|
**{"model_kwargs": _model_kwargs},
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "azureml_chat_endpoint"
|
|
|
|
def _call(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to an AzureML Managed Online endpoint.
|
|
Args:
|
|
messages: The messages in the conversation with the chat model.
|
|
stop: Optional list of stop words to use when generating.
|
|
Returns:
|
|
The string generated by the model.
|
|
Example:
|
|
.. code-block:: python
|
|
response = azureml_model("Tell me a joke.")
|
|
"""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
request_payload = self.content_formatter._format_request_payload(
|
|
messages, _model_kwargs
|
|
)
|
|
response_payload = self.http_client.call(request_payload, **kwargs)
|
|
generated_text = self.content_formatter.format_response_payload(
|
|
response_payload
|
|
)
|
|
return generated_text
|