Go to file
Ishani Vyas 2b0cbd65ba
community[patch]: Add Passio Nutrition AI Food Search Tool to Community Package (#18278)
## Add Passio Nutrition AI Food Search Tool to Community Package

### Description
We propose adding a new tool to the `community` package, enabling
integration with Passio Nutrition AI for food search functionality. This
tool will provide a simple interface for retrieving nutrition facts
through the Passio Nutrition AI API, simplifying user access to
nutrition data based on food search queries.

### Implementation Details
- **Class Structure:** Implement `NutritionAI`, extending `BaseTool`. It
includes an `_run` method that accepts a query string and, optionally, a
`CallbackManagerForToolRun`.
- **API Integration:** Use `NutritionAIAPI` for the API wrapper,
encapsulating all interactions with the Passio Nutrition AI and
providing a clean API interface.
- **Error Handling:** Implement comprehensive error handling for API
request failures.

### Expected Outcome
- **User Benefits:** Enable easy querying of nutrition facts from Passio
Nutrition AI, enhancing the utility of the `langchain_community` package
for nutrition-related projects.
- **Functionality:** Provide a straightforward method for integrating
nutrition information retrieval into users' applications.

### Dependencies
- `langchain_core` for base tooling support
- `pydantic` for data validation and settings management
- Consider `requests` or another HTTP client library if not covered by
`NutritionAIAPI`.

### Tests and Documentation
- **Unit Tests:** Include tests that mock network interactions to ensure
tool reliability without external API dependency.
- **Documentation:** Create an example notebook in
`docs/docs/integrations/tools/passio_nutrition_ai.ipynb` showing usage,
setup, and example queries.

### Contribution Guidelines Compliance
- Adhere to the project's linting and formatting standards (`make
format`, `make lint`, `make test`).
- Ensure compliance with LangChain's contribution guidelines,
particularly around dependency management and package modifications.

### Additional Notes
- Aim for the tool to be a lightweight, focused addition, not
introducing significant new dependencies or complexity.
- Potential future enhancements could include caching for common queries
to improve performance.

### Twitter Handle
- Here is our Passio AI [twitter handle](https://twitter.com/@passio_ai)
where we announce our products.


If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-03-08 20:33:22 +00:00
.devcontainer Update README.md (#8570) 2023-11-12 22:07:49 -08:00
.github nvidia-trt, nvidia-ai-endpoints: move to repo (#18814) 2024-03-08 19:30:50 +00:00
cookbook docs:Update function "run" to "invoke" in llm_bash.ipynb (#18663) 2024-03-08 09:35:36 -08:00
docker community[patch]: Add pgvector to docker compose and update settings used in integration test (#18815) 2024-03-08 14:39:28 -05:00
docs community[patch]: Add Passio Nutrition AI Food Search Tool to Community Package (#18278) 2024-03-08 20:33:22 +00:00
libs community[patch]: Add Passio Nutrition AI Food Search Tool to Community Package (#18278) 2024-03-08 20:33:22 +00:00
templates elasticsearch[patch], community[patch]: update references, deprecate community classes (#18506) 2024-03-06 15:09:12 -08:00
.gitattributes Update dev container (#6189) 2023-06-16 15:42:14 -07:00
.gitignore airbyte[patch]: init pkg (#18236) 2024-02-27 19:37:53 -08:00
.readthedocs.yaml infra: update rtd yaml (#17502) 2024-02-13 18:16:44 -08:00
CITATION.cff rename repo namespace to langchain-ai (#11259) 2023-10-01 15:30:58 -04:00
LICENSE Library Licenses (#13300) 2023-11-28 17:34:27 -08:00
Makefile infra: update to pathspec for 'git grep' in lint check (#18178) 2024-03-01 22:03:45 +00:00
MIGRATE.md Update main readme (#13298) 2023-11-13 17:37:54 -08:00
poetry.lock text-splitters[minor], langchain[minor], community[patch], templates, docs: langchain-text-splitters 0.0.1 (#18346) 2024-02-29 18:33:21 -08:00
poetry.toml Unbreak devcontainer (#8154) 2023-07-23 19:33:47 -07:00
pyproject.toml text-splitters[minor], langchain[minor], community[patch], templates, docs: langchain-text-splitters 0.0.1 (#18346) 2024-02-29 18:33:21 -08:00
README.md Update contact link (#17563) 2024-02-14 22:37:32 -08:00
SECURITY.md Update SECURITY.md email address. (#9558) 2023-08-21 14:52:21 -04:00

🦜🔗 LangChain

Build context-aware reasoning applications

Release Notes CI Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces GitHub star chart Dependency Status Open Issues

Looking for the JS/TS library? Check out LangChain.js.

To help you ship LangChain apps to production faster, check out LangSmith. LangSmith is a unified developer platform for building, testing, and monitoring LLM applications. Fill out this form to speak with our sales team.

Quick Install

With pip:

pip install langchain

With conda:

conda install langchain -c conda-forge

🤔 What is LangChain?

LangChain is a framework for developing applications powered by language models. It enables applications that:

  • Are context-aware: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
  • Reason: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)

This framework consists of several parts.

  • LangChain Libraries: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
  • LangChain Templates: A collection of easily deployable reference architectures for a wide variety of tasks.
  • LangServe: A library for deploying LangChain chains as a REST API.
  • LangSmith: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
  • LangGraph: LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner.

The LangChain libraries themselves are made up of several different packages.

  • langchain-core: Base abstractions and LangChain Expression Language.
  • langchain-community: Third party integrations.
  • langchain: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.

Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.

🧱 What can you build with LangChain?

Retrieval augmented generation

💬 Analyzing structured data

🤖 Chatbots

And much more! Head to the Use cases section of the docs for more.

🚀 How does LangChain help?

The main value props of the LangChain libraries are:

  1. Components: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
  2. Off-the-shelf chains: built-in assemblages of components for accomplishing higher-level tasks

Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.

Components fall into the following modules:

📃 Model I/O:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.

📚 Retrieval:

Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

📖 Documentation

Please see here for full documentation, which includes:

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see here.

🌟 Contributors

langchain contributors