langchain/tests/integration_tests/vectorstores/test_hologres.py
Harrison Chase e05997c25e
Harrison/hologres (#6012)
Co-authored-by: Changgeng Zhao <changgeng@nyu.edu>
Co-authored-by: Changgeng Zhao <zhaochanggeng.zcg@alibaba-inc.com>
2023-06-11 20:56:51 -07:00

143 lines
5.1 KiB
Python

"""Test Hologres functionality."""
import os
from typing import List
from langchain.docstore.document import Document
from langchain.vectorstores.hologres import Hologres
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
CONNECTION_STRING = Hologres.connection_string_from_db_params(
host=os.environ.get("TEST_HOLOGRES_HOST", "localhost"),
port=int(os.environ.get("TEST_HOLOGRES_PORT", "80")),
database=os.environ.get("TEST_HOLOGRES_DATABASE", "postgres"),
user=os.environ.get("TEST_HOLOGRES_USER", "postgres"),
password=os.environ.get("TEST_HOLOGRES_PASSWORD", "postgres"),
)
ADA_TOKEN_COUNT = 1536
class FakeEmbeddingsWithAdaDimension(FakeEmbeddings):
"""Fake embeddings functionality for testing."""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return simple embeddings."""
return [
[float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(i)] for i in range(len(texts))
]
def embed_query(self, text: str) -> List[float]:
"""Return simple embeddings."""
return [float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(0.0)]
def test_hologres() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = Hologres.from_texts(
texts=texts,
table_name="test_table",
embedding=FakeEmbeddingsWithAdaDimension(),
connection_string=CONNECTION_STRING,
pre_delete_table=True,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_hologres_embeddings() -> None:
"""Test end to end construction with embeddings and search."""
texts = ["foo", "bar", "baz"]
text_embeddings = FakeEmbeddingsWithAdaDimension().embed_documents(texts)
text_embedding_pairs = list(zip(texts, text_embeddings))
docsearch = Hologres.from_embeddings(
text_embeddings=text_embedding_pairs,
table_name="test_table",
embedding=FakeEmbeddingsWithAdaDimension(),
connection_string=CONNECTION_STRING,
pre_delete_table=True,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_hologres_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = Hologres.from_texts(
texts=texts,
table_name="test_table",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
pre_delete_table=True,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": "0"})]
def test_hologres_with_metadatas_with_scores() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = Hologres.from_texts(
texts=texts,
table_name="test_table",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
pre_delete_table=True,
)
output = docsearch.similarity_search_with_score("foo", k=1)
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
def test_hologres_with_filter_match() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = Hologres.from_texts(
texts=texts,
table_name="test_table_filter",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
pre_delete_table=True,
)
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "0"})
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
def test_hologres_with_filter_distant_match() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = Hologres.from_texts(
texts=texts,
table_name="test_table_filter",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
pre_delete_table=True,
)
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "2"})
assert output == [(Document(page_content="baz", metadata={"page": "2"}), 4.0)]
def test_hologres_with_filter_no_match() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = Hologres.from_texts(
texts=texts,
table_name="test_table_filter",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
pre_delete_table=True,
)
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "5"})
assert output == []