mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
85e1c9b348
#5278 Co-authored-by: Leonid Kuligin <kuligin@google.com>
156 lines
5.5 KiB
Python
156 lines
5.5 KiB
Python
"""Test Vertex AI API wrapper.
|
|
In order to run this test, you need to install VertexAI SDK (that is is the private
|
|
preview) and be whitelisted to list the models themselves:
|
|
In order to run this test, you need to install VertexAI SDK
|
|
pip install google-cloud-aiplatform>=1.25.0
|
|
|
|
Your end-user credentials would be used to make the calls (make sure you've run
|
|
`gcloud auth login` first).
|
|
"""
|
|
from unittest.mock import MagicMock, Mock, patch
|
|
|
|
import pytest
|
|
|
|
from langchain.chat_models import ChatVertexAI
|
|
from langchain.chat_models.vertexai import _parse_chat_history, _parse_examples
|
|
from langchain.schema.messages import AIMessage, HumanMessage, SystemMessage
|
|
|
|
|
|
def test_vertexai_single_call() -> None:
|
|
model = ChatVertexAI()
|
|
message = HumanMessage(content="Hello")
|
|
response = model([message])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
assert model._llm_type == "vertexai"
|
|
assert model.model_name == model.client._model_id
|
|
|
|
|
|
def test_vertexai_single_call_with_context() -> None:
|
|
model = ChatVertexAI()
|
|
raw_context = (
|
|
"My name is Ned. You are my personal assistant. My favorite movies "
|
|
"are Lord of the Rings and Hobbit."
|
|
)
|
|
question = (
|
|
"Hello, could you recommend a good movie for me to watch this evening, please?"
|
|
)
|
|
context = SystemMessage(content=raw_context)
|
|
message = HumanMessage(content=question)
|
|
response = model([context, message])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_vertexai_single_call_with_examples() -> None:
|
|
model = ChatVertexAI()
|
|
raw_context = "My name is Ned. You are my personal assistant."
|
|
question = "2+2"
|
|
text_question, text_answer = "4+4", "8"
|
|
inp = HumanMessage(content=text_question)
|
|
output = AIMessage(content=text_answer)
|
|
context = SystemMessage(content=raw_context)
|
|
message = HumanMessage(content=question)
|
|
response = model([context, message], examples=[inp, output])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_parse_chat_history_correct() -> None:
|
|
from vertexai.language_models import ChatMessage
|
|
|
|
text_context = (
|
|
"My name is Ned. You are my personal assistant. My "
|
|
"favorite movies are Lord of the Rings and Hobbit."
|
|
)
|
|
context = SystemMessage(content=text_context)
|
|
text_question = (
|
|
"Hello, could you recommend a good movie for me to watch this evening, please?"
|
|
)
|
|
question = HumanMessage(content=text_question)
|
|
text_answer = (
|
|
"Sure, You might enjoy The Lord of the Rings: The Fellowship of the Ring "
|
|
"(2001): This is the first movie in the Lord of the Rings trilogy."
|
|
)
|
|
answer = AIMessage(content=text_answer)
|
|
history = _parse_chat_history([context, question, answer, question, answer])
|
|
assert history.context == context.content
|
|
assert len(history.history) == 4
|
|
assert history.history == [
|
|
ChatMessage(content=text_question, author="user"),
|
|
ChatMessage(content=text_answer, author="bot"),
|
|
ChatMessage(content=text_question, author="user"),
|
|
ChatMessage(content=text_answer, author="bot"),
|
|
]
|
|
|
|
|
|
def test_vertexai_single_call_failes_no_message() -> None:
|
|
chat = ChatVertexAI()
|
|
with pytest.raises(ValueError) as exc_info:
|
|
_ = chat([])
|
|
assert (
|
|
str(exc_info.value)
|
|
== "You should provide at least one message to start the chat!"
|
|
)
|
|
|
|
|
|
def test_vertexai_args_passed() -> None:
|
|
response_text = "Goodbye"
|
|
user_prompt = "Hello"
|
|
prompt_params = {
|
|
"max_output_tokens": 1,
|
|
"temperature": 10000.0,
|
|
"top_k": 10,
|
|
"top_p": 0.5,
|
|
}
|
|
|
|
# Mock the library to ensure the args are passed correctly
|
|
with patch(
|
|
"vertexai.language_models._language_models.ChatModel.start_chat"
|
|
) as start_chat:
|
|
mock_response = Mock(text=response_text)
|
|
mock_chat = MagicMock()
|
|
start_chat.return_value = mock_chat
|
|
mock_send_message = MagicMock(return_value=mock_response)
|
|
mock_chat.send_message = mock_send_message
|
|
|
|
model = ChatVertexAI(**prompt_params)
|
|
message = HumanMessage(content=user_prompt)
|
|
response = model([message])
|
|
|
|
assert response.content == response_text
|
|
mock_send_message.assert_called_once_with(user_prompt)
|
|
start_chat.assert_called_once_with(
|
|
context=None, message_history=[], **prompt_params
|
|
)
|
|
|
|
|
|
def test_parse_examples_correct() -> None:
|
|
from vertexai.language_models import InputOutputTextPair
|
|
|
|
text_question = (
|
|
"Hello, could you recommend a good movie for me to watch this evening, please?"
|
|
)
|
|
question = HumanMessage(content=text_question)
|
|
text_answer = (
|
|
"Sure, You might enjoy The Lord of the Rings: The Fellowship of the Ring "
|
|
"(2001): This is the first movie in the Lord of the Rings trilogy."
|
|
)
|
|
answer = AIMessage(content=text_answer)
|
|
examples = _parse_examples([question, answer, question, answer])
|
|
assert len(examples) == 2
|
|
assert examples == [
|
|
InputOutputTextPair(input_text=text_question, output_text=text_answer),
|
|
InputOutputTextPair(input_text=text_question, output_text=text_answer),
|
|
]
|
|
|
|
|
|
def test_parse_exmaples_failes_wrong_sequence() -> None:
|
|
with pytest.raises(ValueError) as exc_info:
|
|
_ = _parse_examples([AIMessage(content="a")])
|
|
print(str(exc_info.value))
|
|
assert (
|
|
str(exc_info.value)
|
|
== "Expect examples to have an even amount of messages, got 1."
|
|
)
|