langchain/tests/integration_tests/llms/test_anthropic.py
Mike Lambert 392f1b3218
Add Anthropic ChatModel to langchain (#2293)
* Adds an Anthropic ChatModel
* Factors out common code in our LLMModel and ChatModel
* Supports streaming llm-tokens to the callbacks on a delta basis (until
a future V2 API does that for us)
* Some fixes
2023-04-14 15:09:07 -07:00

64 lines
1.9 KiB
Python

"""Test Anthropic API wrapper."""
from typing import Generator
import pytest
from langchain.callbacks.base import CallbackManager
from langchain.llms.anthropic import Anthropic
from langchain.schema import LLMResult
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
def test_anthropic_call() -> None:
"""Test valid call to anthropic."""
llm = Anthropic(model="bare-nano-0")
output = llm("Say foo:")
assert isinstance(output, str)
def test_anthropic_streaming() -> None:
"""Test streaming tokens from anthropic."""
llm = Anthropic(model="bare-nano-0")
generator = llm.stream("I'm Pickle Rick")
assert isinstance(generator, Generator)
for token in generator:
assert isinstance(token["completion"], str)
def test_anthropic_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = Anthropic(
streaming=True,
callback_manager=callback_manager,
verbose=True,
)
llm("Write me a sentence with 100 words.")
assert callback_handler.llm_streams > 1
@pytest.mark.asyncio
async def test_anthropic_async_generate() -> None:
"""Test async generate."""
llm = Anthropic()
output = await llm.agenerate(["How many toes do dogs have?"])
assert isinstance(output, LLMResult)
@pytest.mark.asyncio
async def test_anthropic_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = Anthropic(
streaming=True,
callback_manager=callback_manager,
verbose=True,
)
result = await llm.agenerate(["How many toes do dogs have?"])
assert callback_handler.llm_streams > 1
assert isinstance(result, LLMResult)