mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
fb676d8a9b
Moved Rail parser to `community` package.
110 lines
3.2 KiB
Python
110 lines
3.2 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import Any, Callable, Dict, Optional
|
|
|
|
from langchain_core.output_parsers import BaseOutputParser
|
|
|
|
|
|
class GuardrailsOutputParser(BaseOutputParser):
|
|
"""Parse the output of an LLM call using Guardrails."""
|
|
|
|
guard: Any
|
|
"""The Guardrails object."""
|
|
api: Optional[Callable]
|
|
"""The LLM API passed to Guardrails during parsing. An example is `openai.completions.create`.""" # noqa: E501
|
|
args: Any
|
|
"""Positional arguments to pass to the above LLM API callable."""
|
|
kwargs: Any
|
|
"""Keyword arguments to pass to the above LLM API callable."""
|
|
|
|
@property
|
|
def _type(self) -> str:
|
|
return "guardrails"
|
|
|
|
@classmethod
|
|
def from_rail(
|
|
cls,
|
|
rail_file: str,
|
|
num_reasks: int = 1,
|
|
api: Optional[Callable] = None,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> GuardrailsOutputParser:
|
|
"""Create a GuardrailsOutputParser from a rail file.
|
|
|
|
Args:
|
|
rail_file: a rail file.
|
|
num_reasks: number of times to re-ask the question.
|
|
api: the API to use for the Guardrails object.
|
|
*args: The arguments to pass to the API
|
|
**kwargs: The keyword arguments to pass to the API.
|
|
|
|
Returns:
|
|
GuardrailsOutputParser
|
|
"""
|
|
try:
|
|
from guardrails import Guard
|
|
except ImportError:
|
|
raise ImportError(
|
|
"guardrails-ai package not installed. "
|
|
"Install it by running `pip install guardrails-ai`."
|
|
)
|
|
return cls(
|
|
guard=Guard.from_rail(rail_file, num_reasks=num_reasks),
|
|
api=api,
|
|
args=args,
|
|
kwargs=kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_rail_string(
|
|
cls,
|
|
rail_str: str,
|
|
num_reasks: int = 1,
|
|
api: Optional[Callable] = None,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> GuardrailsOutputParser:
|
|
try:
|
|
from guardrails import Guard
|
|
except ImportError:
|
|
raise ImportError(
|
|
"guardrails-ai package not installed. "
|
|
"Install it by running `pip install guardrails-ai`."
|
|
)
|
|
return cls(
|
|
guard=Guard.from_rail_string(rail_str, num_reasks=num_reasks),
|
|
api=api,
|
|
args=args,
|
|
kwargs=kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_pydantic(
|
|
cls,
|
|
output_class: Any,
|
|
num_reasks: int = 1,
|
|
api: Optional[Callable] = None,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> GuardrailsOutputParser:
|
|
try:
|
|
from guardrails import Guard
|
|
except ImportError:
|
|
raise ImportError(
|
|
"guardrails-ai package not installed. "
|
|
"Install it by running `pip install guardrails-ai`."
|
|
)
|
|
return cls(
|
|
guard=Guard.from_pydantic(output_class, "", num_reasks=num_reasks),
|
|
api=api,
|
|
args=args,
|
|
kwargs=kwargs,
|
|
)
|
|
|
|
def get_format_instructions(self) -> str:
|
|
return self.guard.raw_prompt.format_instructions
|
|
|
|
def parse(self, text: str) -> Dict:
|
|
return self.guard.parse(text, llm_api=self.api, *self.args, **self.kwargs)
|