mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
160 lines
4.9 KiB
Python
160 lines
4.9 KiB
Python
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
|
|
class Writer(LLM):
|
|
"""Writer large language models.
|
|
|
|
To use, you should have the environment variable ``WRITER_API_KEY`` and
|
|
``WRITER_ORG_ID`` set with your API key and organization ID respectively.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import Writer
|
|
writer = Writer(model_id="palmyra-base")
|
|
"""
|
|
|
|
writer_org_id: Optional[str] = None
|
|
"""Writer organization ID."""
|
|
|
|
model_id: str = "palmyra-instruct"
|
|
"""Model name to use."""
|
|
|
|
min_tokens: Optional[int] = None
|
|
"""Minimum number of tokens to generate."""
|
|
|
|
max_tokens: Optional[int] = None
|
|
"""Maximum number of tokens to generate."""
|
|
|
|
temperature: Optional[float] = None
|
|
"""What sampling temperature to use."""
|
|
|
|
top_p: Optional[float] = None
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
|
|
stop: Optional[List[str]] = None
|
|
"""Sequences when completion generation will stop."""
|
|
|
|
presence_penalty: Optional[float] = None
|
|
"""Penalizes repeated tokens regardless of frequency."""
|
|
|
|
repetition_penalty: Optional[float] = None
|
|
"""Penalizes repeated tokens according to frequency."""
|
|
|
|
best_of: Optional[int] = None
|
|
"""Generates this many completions server-side and returns the "best"."""
|
|
|
|
logprobs: bool = False
|
|
"""Whether to return log probabilities."""
|
|
|
|
n: Optional[int] = None
|
|
"""How many completions to generate."""
|
|
|
|
writer_api_key: Optional[str] = None
|
|
"""Writer API key."""
|
|
|
|
base_url: Optional[str] = None
|
|
"""Base url to use, if None decides based on model name."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and organization id exist in environment."""
|
|
|
|
writer_api_key = get_from_dict_or_env(
|
|
values, "writer_api_key", "WRITER_API_KEY"
|
|
)
|
|
values["writer_api_key"] = writer_api_key
|
|
|
|
writer_org_id = get_from_dict_or_env(values, "writer_org_id", "WRITER_ORG_ID")
|
|
values["writer_org_id"] = writer_org_id
|
|
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Mapping[str, Any]:
|
|
"""Get the default parameters for calling Writer API."""
|
|
return {
|
|
"minTokens": self.min_tokens,
|
|
"maxTokens": self.max_tokens,
|
|
"temperature": self.temperature,
|
|
"topP": self.top_p,
|
|
"stop": self.stop,
|
|
"presencePenalty": self.presence_penalty,
|
|
"repetitionPenalty": self.repetition_penalty,
|
|
"bestOf": self.best_of,
|
|
"logprobs": self.logprobs,
|
|
"n": self.n,
|
|
}
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
**{"model_id": self.model_id, "writer_org_id": self.writer_org_id},
|
|
**self._default_params,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "writer"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to Writer's completions endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = Writer("Tell me a joke.")
|
|
"""
|
|
if self.base_url is not None:
|
|
base_url = self.base_url
|
|
else:
|
|
base_url = (
|
|
"https://enterprise-api.writer.com/llm"
|
|
f"/organization/{self.writer_org_id}"
|
|
f"/model/{self.model_id}/completions"
|
|
)
|
|
params = {**self._default_params, **kwargs}
|
|
response = requests.post(
|
|
url=base_url,
|
|
headers={
|
|
"Authorization": f"{self.writer_api_key}",
|
|
"Content-Type": "application/json",
|
|
"Accept": "application/json",
|
|
},
|
|
json={"prompt": prompt, **params},
|
|
)
|
|
text = response.text
|
|
if stop is not None:
|
|
# I believe this is required since the stop tokens
|
|
# are not enforced by the model parameters
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|