mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
cc407e8a1b
Support weight only quantization with intel-extension-for-transformers. [Intel® Extension for Transformers](https://github.com/intel/intel-extension-for-transformers) is an innovative toolkit to accelerate Transformer-based models on Intel platforms, in particular effective on 4th Intel Xeon Scalable processor [Sapphire Rapids](https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors.html) (codenamed Sapphire Rapids). The toolkit provides the below key features: * Seamless user experience of model compressions on Transformer-based models by extending [Hugging Face transformers](https://github.com/huggingface/transformers) APIs and leveraging [Intel® Neural Compressor](https://github.com/intel/neural-compressor) * Advanced software optimizations and unique compression-aware runtime. * Optimized Transformer-based model packages. * [NeuralChat](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/neural_chat), a customizable chatbot framework to create your own chatbot within minutes by leveraging a rich set of plugins and SOTA optimizations. * [Inference](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/llm/runtime/graph) of Large Language Model (LLM) in pure C/C++ with weight-only quantization kernels. This PR is an integration of weight only quantization feature with intel-extension-for-transformers. Unit test is in lib/langchain/tests/integration_tests/llm/test_weight_only_quantization.py The notebook is in docs/docs/integrations/llms/weight_only_quantization.ipynb. The document is in docs/docs/integrations/providers/weight_only_quantization.mdx. --------- Signed-off-by: Cheng, Penghui <penghui.cheng@intel.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
245 lines
8.7 KiB
Python
245 lines
8.7 KiB
Python
import importlib
|
|
from typing import Any, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
DEFAULT_MODEL_ID = "google/flan-t5-large"
|
|
DEFAULT_TASK = "text2text-generation"
|
|
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
|
|
|
|
|
|
class WeightOnlyQuantPipeline(LLM):
|
|
"""Weight only quantized model.
|
|
|
|
To use, you should have the `intel-extension-for-transformers` packabge and
|
|
`transformers` package installed.
|
|
intel-extension-for-transformers:
|
|
https://github.com/intel/intel-extension-for-transformers
|
|
|
|
Example using from_model_id:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import WeightOnlyQuantPipeline
|
|
from intel_extension_for_transformers.transformers import (
|
|
WeightOnlyQuantConfig
|
|
)
|
|
config = WeightOnlyQuantConfig
|
|
hf = WeightOnlyQuantPipeline.from_model_id(
|
|
model_id="google/flan-t5-large",
|
|
task="text2text-generation"
|
|
pipeline_kwargs={"max_new_tokens": 10},
|
|
quantization_config=config,
|
|
)
|
|
Example passing pipeline in directly:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import WeightOnlyQuantPipeline
|
|
from intel_extension_for_transformers.transformers import (
|
|
AutoModelForSeq2SeqLM
|
|
)
|
|
from intel_extension_for_transformers.transformers import (
|
|
WeightOnlyQuantConfig
|
|
)
|
|
from transformers import AutoTokenizer, pipeline
|
|
|
|
model_id = "google/flan-t5-large"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
config = WeightOnlyQuantConfig
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
model_id,
|
|
quantization_config=config,
|
|
)
|
|
pipe = pipeline(
|
|
"text-generation",
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
max_new_tokens=10,
|
|
)
|
|
hf = WeightOnlyQuantPipeline(pipeline=pipe)
|
|
"""
|
|
|
|
pipeline: Any #: :meta private:
|
|
model_id: str = DEFAULT_MODEL_ID
|
|
"""Model name or local path to use."""
|
|
|
|
model_kwargs: Optional[dict] = None
|
|
"""Key word arguments passed to the model."""
|
|
|
|
pipeline_kwargs: Optional[dict] = None
|
|
"""Key word arguments passed to the pipeline."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.allow
|
|
|
|
@classmethod
|
|
def from_model_id(
|
|
cls,
|
|
model_id: str,
|
|
task: str,
|
|
device: Optional[int] = -1,
|
|
device_map: Optional[str] = None,
|
|
model_kwargs: Optional[dict] = None,
|
|
pipeline_kwargs: Optional[dict] = None,
|
|
load_in_4bit: Optional[bool] = False,
|
|
load_in_8bit: Optional[bool] = False,
|
|
quantization_config: Optional[Any] = None,
|
|
**kwargs: Any,
|
|
) -> LLM:
|
|
"""Construct the pipeline object from model_id and task."""
|
|
if device_map is not None and (isinstance(device, int) and device > -1):
|
|
raise ValueError("`Device` and `device_map` cannot be set simultaneously!")
|
|
if importlib.util.find_spec("torch") is None:
|
|
raise ValueError(
|
|
"Weight only quantization pipeline only support PyTorch now!"
|
|
)
|
|
|
|
try:
|
|
from intel_extension_for_transformers.transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoModelForSeq2SeqLM,
|
|
)
|
|
from intel_extension_for_transformers.utils.utils import is_ipex_available
|
|
from transformers import AutoTokenizer
|
|
from transformers import pipeline as hf_pipeline
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import transformers python package. "
|
|
"Please install it with `pip install transformers` "
|
|
"and `pip install intel-extension-for-transformers`."
|
|
)
|
|
if isinstance(device, int) and device >= 0:
|
|
if not is_ipex_available():
|
|
raise ValueError("Don't find out Intel GPU on this machine!")
|
|
device_map = "xpu:" + str(device)
|
|
elif isinstance(device, int) and device < 0:
|
|
device = None
|
|
|
|
if device is None:
|
|
if device_map is None:
|
|
device_map = "cpu"
|
|
|
|
_model_kwargs = model_kwargs or {}
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
|
|
|
try:
|
|
if task == "text-generation":
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id,
|
|
load_in_4bit=load_in_4bit,
|
|
load_in_8bit=load_in_8bit,
|
|
quantization_config=quantization_config,
|
|
use_llm_runtime=False,
|
|
device_map=device_map,
|
|
**_model_kwargs,
|
|
)
|
|
elif task in ("text2text-generation", "summarization"):
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
model_id,
|
|
load_in_4bit=load_in_4bit,
|
|
load_in_8bit=load_in_8bit,
|
|
quantization_config=quantization_config,
|
|
use_llm_runtime=False,
|
|
device_map=device_map,
|
|
**_model_kwargs,
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Got invalid task {task}, "
|
|
f"currently only {VALID_TASKS} are supported"
|
|
)
|
|
except ImportError as e:
|
|
raise ValueError(
|
|
f"Could not load the {task} model due to missing dependencies."
|
|
) from e
|
|
|
|
if "trust_remote_code" in _model_kwargs:
|
|
_model_kwargs = {
|
|
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
|
}
|
|
_pipeline_kwargs = pipeline_kwargs or {}
|
|
pipeline = hf_pipeline(
|
|
task=task,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
device=device,
|
|
model_kwargs=_model_kwargs,
|
|
**_pipeline_kwargs,
|
|
)
|
|
if pipeline.task not in VALID_TASKS:
|
|
raise ValueError(
|
|
f"Got invalid task {pipeline.task}, "
|
|
f"currently only {VALID_TASKS} are supported"
|
|
)
|
|
return cls(
|
|
pipeline=pipeline,
|
|
model_id=model_id,
|
|
model_kwargs=_model_kwargs,
|
|
pipeline_kwargs=_pipeline_kwargs,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model_id": self.model_id,
|
|
"model_kwargs": self.model_kwargs,
|
|
"pipeline_kwargs": self.pipeline_kwargs,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "weight_only_quantization"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call the HuggingFace model and return the output.
|
|
|
|
Args:
|
|
prompt: The prompt to use for generation.
|
|
stop: A list of strings to stop generation when encountered.
|
|
|
|
Returns:
|
|
The generated text.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import WeightOnlyQuantPipeline
|
|
llm = WeightOnlyQuantPipeline.from_model_id(
|
|
model_id="google/flan-t5-large",
|
|
task="text2text-generation",
|
|
)
|
|
llm("This is a prompt.")
|
|
"""
|
|
response = self.pipeline(prompt)
|
|
if self.pipeline.task == "text-generation":
|
|
# Text generation return includes the starter text.
|
|
text = response[0]["generated_text"][len(prompt) :]
|
|
elif self.pipeline.task == "text2text-generation":
|
|
text = response[0]["generated_text"]
|
|
elif self.pipeline.task == "summarization":
|
|
text = response[0]["summary_text"]
|
|
else:
|
|
raise ValueError(
|
|
f"Got invalid task {self.pipeline.task}, "
|
|
f"currently only {VALID_TASKS} are supported"
|
|
)
|
|
if stop:
|
|
# This is a bit hacky, but I can't figure out a better way to enforce
|
|
# stop tokens when making calls to huggingface_hub.
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|