mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
0d294760e7
## Description Fuse HuggingFace Endpoint-related classes into one: - [HuggingFaceHub](5ceaf784f3/libs/community/langchain_community/llms/huggingface_hub.py
) - [HuggingFaceTextGenInference](5ceaf784f3/libs/community/langchain_community/llms/huggingface_text_gen_inference.py
) - and [HuggingFaceEndpoint](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py
) Are fused into - HuggingFaceEndpoint ## Issue The deduplication of classes was creating a lack of clarity, and additional effort to develop classes leads to issues like [this hack](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py (L159)
). ## Dependancies None, this removes dependancies. ## Twitter handle If you want to post about this: @AymericRoucher --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
153 lines
5.3 KiB
Python
153 lines
5.3 KiB
Python
import json
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
from langchain_core._api.deprecation import deprecated
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
# key: task
|
|
# value: key in the output dictionary
|
|
VALID_TASKS_DICT = {
|
|
"translation": "translation_text",
|
|
"summarization": "summary_text",
|
|
"conversational": "generated_text",
|
|
"text-generation": "generated_text",
|
|
"text2text-generation": "generated_text",
|
|
}
|
|
|
|
|
|
@deprecated("0.0.21", removal="0.2.0", alternative="HuggingFaceEndpoint")
|
|
class HuggingFaceHub(LLM):
|
|
"""HuggingFaceHub models.
|
|
! This class is deprecated, you should use HuggingFaceEndpoint instead.
|
|
|
|
To use, you should have the ``huggingface_hub`` python package installed, and the
|
|
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
|
|
it as a named parameter to the constructor.
|
|
|
|
Supports `text-generation`, `text2text-generation`, `conversational`, `translation`,
|
|
and `summarization`.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import HuggingFaceHub
|
|
hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key")
|
|
"""
|
|
|
|
client: Any #: :meta private:
|
|
repo_id: Optional[str] = None
|
|
"""Model name to use.
|
|
If not provided, the default model for the chosen task will be used."""
|
|
task: Optional[str] = None
|
|
"""Task to call the model with.
|
|
Should be a task that returns `generated_text`, `summary_text`,
|
|
or `translation_text`."""
|
|
model_kwargs: Optional[dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
huggingfacehub_api_token: Optional[str] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
huggingfacehub_api_token = get_from_dict_or_env(
|
|
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
|
)
|
|
try:
|
|
from huggingface_hub import HfApi, InferenceClient
|
|
|
|
repo_id = values["repo_id"]
|
|
client = InferenceClient(
|
|
model=repo_id,
|
|
token=huggingfacehub_api_token,
|
|
)
|
|
if not values["task"]:
|
|
if not repo_id:
|
|
raise ValueError(
|
|
"Must specify either `repo_id` or `task`, or both."
|
|
)
|
|
# Use the recommended task for the chosen model
|
|
model_info = HfApi(token=huggingfacehub_api_token).model_info(
|
|
repo_id=repo_id
|
|
)
|
|
values["task"] = model_info.pipeline_tag
|
|
if values["task"] not in VALID_TASKS_DICT:
|
|
raise ValueError(
|
|
f"Got invalid task {values['task']}, "
|
|
f"currently only {VALID_TASKS_DICT.keys()} are supported"
|
|
)
|
|
values["client"] = client
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import huggingface_hub python package. "
|
|
"Please install it with `pip install huggingface_hub`."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
return {
|
|
**{"repo_id": self.repo_id, "task": self.task},
|
|
**{"model_kwargs": _model_kwargs},
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "huggingface_hub"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to HuggingFace Hub's inference endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = hf("Tell me a joke.")
|
|
"""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
parameters = {**_model_kwargs, **kwargs}
|
|
|
|
response = self.client.post(
|
|
json={"inputs": prompt, "parameters": parameters}, task=self.task
|
|
)
|
|
response = json.loads(response.decode())
|
|
if "error" in response:
|
|
raise ValueError(f"Error raised by inference API: {response['error']}")
|
|
|
|
response_key = VALID_TASKS_DICT[self.task] # type: ignore
|
|
if isinstance(response, list):
|
|
text = response[0][response_key]
|
|
else:
|
|
text = response[response_key]
|
|
|
|
if stop is not None:
|
|
# This is a bit hacky, but I can't figure out a better way to enforce
|
|
# stop tokens when making calls to huggingface_hub.
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|