langchain/tests/integration_tests/vectorstores/test_pinecone.py
Kevin Huo 31b054f69d
Add pinecone integration test (#911)
Basic integration test for pinecone
2023-02-06 18:13:35 -08:00

60 lines
2.0 KiB
Python

"""Test Pinecone functionality."""
import pinecone
from langchain.docstore.document import Document
from langchain.vectorstores.pinecone import Pinecone
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
pinecone.init(api_key="YOUR_API_KEY", environment="YOUR_ENV")
index = pinecone.Index("langchain-demo")
def test_pinecone() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = Pinecone.from_texts(
texts, FakeEmbeddings(), index_name="langchain-demo", namespace="test"
)
output = docsearch.similarity_search("foo", k=1, namespace="test")
assert output == [Document(page_content="foo")]
def test_pinecone_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Pinecone.from_texts(
texts,
FakeEmbeddings(),
index_name="langchain-demo",
metadatas=metadatas,
namespace="test-metadata",
)
output = docsearch.similarity_search("foo", k=1, namespace="test-metadata")
assert output == [Document(page_content="foo", metadata={"page": 0})]
def test_pinecone_with_scores() -> None:
"""Test end to end construction and search with scores and IDs."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Pinecone.from_texts(
texts,
FakeEmbeddings(),
index_name="langchain-demo",
metadatas=metadatas,
namespace="test-metadata-score",
)
output = docsearch.similarity_search_with_score(
"foo", k=3, namespace="test-metadata-score"
)
docs = [o[0] for o in output]
scores = [o[1] for o in output]
assert docs == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
Document(page_content="baz", metadata={"page": 2}),
]
assert scores[0] > scores[1] > scores[2]