mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
a2588d6c57
In second section it looks like a copy/paste from the first section and doesn't include the specific embedding model mentioned in the example so I added it for clarity. --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
260 lines
5.3 KiB
Plaintext
260 lines
5.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "278b6c63",
|
|
"metadata": {},
|
|
"source": [
|
|
"# OpenAI\n",
|
|
"\n",
|
|
"Let's load the OpenAI Embedding class."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "0be1af71",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.embeddings import OpenAIEmbeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 29,
|
|
"id": "2c66e5da",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"embeddings = OpenAIEmbeddings()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 30,
|
|
"id": "01370375",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"text = \"This is a test document.\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 31,
|
|
"id": "bfb6142c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"query_result = embeddings.embed_query(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 32,
|
|
"id": "91bc875d-829b-4c3d-8e6f-fc2dda30a3bd",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[-0.003186025367556387,\n",
|
|
" 0.011071979803637493,\n",
|
|
" -0.004020420763285827,\n",
|
|
" -0.011658221276953042,\n",
|
|
" -0.0010534035786864363]"
|
|
]
|
|
},
|
|
"execution_count": 32,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"query_result[:5]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 33,
|
|
"id": "0356c3b7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"doc_result = embeddings.embed_documents([text])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 34,
|
|
"id": "a4b0d49e-0c73-44b6-aed5-5b426564e085",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[-0.003186025367556387,\n",
|
|
" 0.011071979803637493,\n",
|
|
" -0.004020420763285827,\n",
|
|
" -0.011658221276953042,\n",
|
|
" -0.0010534035786864363]"
|
|
]
|
|
},
|
|
"execution_count": 34,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"doc_result[0][:5]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bb61bbeb",
|
|
"metadata": {},
|
|
"source": [
|
|
"Let's load the OpenAI Embedding class with first generation models (e.g. text-search-ada-doc-001/text-search-ada-query-001). Note: These are not recommended models - see [here](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "c0b072cc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.embeddings.openai import OpenAIEmbeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 23,
|
|
"id": "a56b70f5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"embeddings = OpenAIEmbeddings(model=\"text-search-ada-doc-001\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 24,
|
|
"id": "14aefb64",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"text = \"This is a test document.\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 25,
|
|
"id": "3c39ed33",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"query_result = embeddings.embed_query(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 26,
|
|
"id": "2ee7ce9f-d506-4810-8897-e44334412714",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[0.004452846988523035,\n",
|
|
" 0.034550655976098514,\n",
|
|
" -0.015029939040690051,\n",
|
|
" 0.03827273883655212,\n",
|
|
" 0.005785414075152477]"
|
|
]
|
|
},
|
|
"execution_count": 26,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"query_result[:5]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 27,
|
|
"id": "e3221db6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"doc_result = embeddings.embed_documents([text])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 28,
|
|
"id": "a0865409-3a6d-468f-939f-abde17c7cac3",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[0.004452846988523035,\n",
|
|
" 0.034550655976098514,\n",
|
|
" -0.015029939040690051,\n",
|
|
" 0.03827273883655212,\n",
|
|
" 0.005785414075152477]"
|
|
]
|
|
},
|
|
"execution_count": 28,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"doc_result[0][:5]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "aaad49f8",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# if you are behind an explicit proxy, you can use the OPENAI_PROXY environment variable to pass through\n",
|
|
"os.environ[\"OPENAI_PROXY\"] = \"http://proxy.yourcompany.com:8080\""
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|