mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
3f6bf852ea
Added missed docstrings. Formatted docsctrings to the consistent format.
168 lines
6.0 KiB
Python
168 lines
6.0 KiB
Python
import asyncio
|
|
import importlib
|
|
from typing import Any, List, Optional
|
|
|
|
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
|
|
ModerationToxicityError,
|
|
)
|
|
|
|
|
|
class ComprehendToxicity:
|
|
"""Class to handle toxicity moderation."""
|
|
|
|
def __init__(
|
|
self,
|
|
client: Any,
|
|
callback: Optional[Any] = None,
|
|
unique_id: Optional[str] = None,
|
|
chain_id: Optional[str] = None,
|
|
) -> None:
|
|
self.client = client
|
|
self.moderation_beacon = {
|
|
"moderation_chain_id": chain_id,
|
|
"moderation_type": "Toxicity",
|
|
"moderation_status": "LABELS_NOT_FOUND",
|
|
}
|
|
self.callback = callback
|
|
self.unique_id = unique_id
|
|
|
|
def _toxicity_init_validate(self, max_size: int) -> Any:
|
|
"""
|
|
Validate and initialize toxicity processing configuration.
|
|
|
|
Args:
|
|
max_size (int): Maximum sentence size defined in the
|
|
configuration object.
|
|
|
|
Raises:
|
|
Exception: If the maximum sentence size exceeds the 5KB limit.
|
|
|
|
Note:
|
|
This function ensures that the NLTK punkt tokenizer is downloaded
|
|
if not already present.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
if max_size > 1024 * 5:
|
|
raise Exception("The sentence length should not exceed 5KB.")
|
|
try:
|
|
nltk = importlib.import_module("nltk")
|
|
nltk.data.find("tokenizers/punkt")
|
|
return nltk
|
|
except ImportError:
|
|
raise ModuleNotFoundError(
|
|
"Could not import nltk python package. "
|
|
"Please install it with `pip install nltk`."
|
|
)
|
|
except LookupError:
|
|
nltk.download("punkt")
|
|
|
|
def _split_paragraph(
|
|
self, prompt_value: str, max_size: int = 1024 * 4
|
|
) -> List[List[str]]:
|
|
"""
|
|
Split a paragraph into chunks of sentences, respecting the maximum size limit.
|
|
|
|
Args:
|
|
paragraph (str): The input paragraph to be split into chunks.
|
|
max_size (int, optional): The maximum size limit in bytes for
|
|
each chunk. Defaults to 1024.
|
|
|
|
Returns:
|
|
List[List[str]]: A list of chunks, where each chunk is a list
|
|
of sentences.
|
|
|
|
Note:
|
|
This function validates the maximum sentence size based on service
|
|
limits using the 'toxicity_init_validate' function. It uses the NLTK
|
|
sentence tokenizer to split the paragraph into sentences.
|
|
|
|
Example:
|
|
paragraph = "This is a sample paragraph. It
|
|
contains multiple sentences. ..."
|
|
chunks = split_paragraph(paragraph, max_size=2048)
|
|
"""
|
|
|
|
# validate max. sentence size based on Service limits
|
|
nltk = self._toxicity_init_validate(max_size)
|
|
sentences = nltk.sent_tokenize(prompt_value)
|
|
chunks = list() # type: ignore
|
|
current_chunk = list() # type: ignore
|
|
current_size = 0
|
|
|
|
for sentence in sentences:
|
|
sentence_size = len(sentence.encode("utf-8"))
|
|
# If adding a new sentence exceeds max_size
|
|
# or current_chunk has 10 sentences, start a new chunk
|
|
if (current_size + sentence_size > max_size) or (len(current_chunk) >= 10):
|
|
if current_chunk: # Avoid appending empty chunks
|
|
chunks.append(current_chunk)
|
|
current_chunk = []
|
|
current_size = 0
|
|
|
|
current_chunk.append(sentence)
|
|
current_size += sentence_size
|
|
|
|
# Add any remaining sentences
|
|
if current_chunk:
|
|
chunks.append(current_chunk)
|
|
return chunks
|
|
|
|
def validate(self, prompt_value: str, config: Any = None) -> str:
|
|
"""
|
|
Check the toxicity of a given text prompt using AWS
|
|
Comprehend service and apply actions based on configuration.
|
|
Args:
|
|
prompt_value (str): The text content to be checked for toxicity.
|
|
config (Dict[str, Any]): Configuration for toxicity checks and actions.
|
|
|
|
Returns:
|
|
str: The original prompt_value if allowed or no toxicity found.
|
|
|
|
Raises:
|
|
ValueError: If the prompt contains toxic labels and cannot be
|
|
processed based on the configuration.
|
|
"""
|
|
|
|
chunks = self._split_paragraph(prompt_value=prompt_value)
|
|
for sentence_list in chunks:
|
|
segments = [{"Text": sentence} for sentence in sentence_list]
|
|
response = self.client.detect_toxic_content(
|
|
TextSegments=segments, LanguageCode="en"
|
|
)
|
|
if self.callback and self.callback.toxicity_callback:
|
|
self.moderation_beacon["moderation_input"] = segments # type: ignore
|
|
self.moderation_beacon["moderation_output"] = response
|
|
toxicity_found = False
|
|
threshold = config.get("threshold")
|
|
toxicity_labels = config.get("labels")
|
|
|
|
if not toxicity_labels:
|
|
for item in response["ResultList"]:
|
|
for label in item["Labels"]:
|
|
if label["Score"] >= threshold:
|
|
toxicity_found = True
|
|
break
|
|
else:
|
|
for item in response["ResultList"]:
|
|
for label in item["Labels"]:
|
|
if (
|
|
label["Name"] in toxicity_labels
|
|
and label["Score"] >= threshold
|
|
):
|
|
toxicity_found = True
|
|
break
|
|
|
|
if self.callback and self.callback.toxicity_callback:
|
|
if toxicity_found:
|
|
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
|
|
asyncio.create_task(
|
|
self.callback.on_after_toxicity(
|
|
self.moderation_beacon, self.unique_id
|
|
)
|
|
)
|
|
if toxicity_found:
|
|
raise ModerationToxicityError
|
|
return prompt_value
|