mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
2f2b77602e
Several `core` modules do not have descriptions, like the [agent](https://api.python.langchain.com/en/latest/core_api_reference.html#module-langchain_core.agents) module. - Added missed module descriptions. The descriptions are mostly copied from the `langchain` or `community` package modules.
919 lines
32 KiB
Python
919 lines
32 KiB
Python
"""**Tools** are classes that an Agent uses to interact with the world.
|
|
|
|
Each tool has a **description**. Agent uses the description to choose the right
|
|
tool for the job.
|
|
|
|
**Class hierarchy:**
|
|
|
|
.. code-block::
|
|
|
|
RunnableSerializable --> BaseTool --> <name>Tool # Examples: AIPluginTool, BaseGraphQLTool
|
|
<name> # Examples: BraveSearch, HumanInputRun
|
|
|
|
**Main helpers:**
|
|
|
|
.. code-block::
|
|
|
|
CallbackManagerForToolRun, AsyncCallbackManagerForToolRun
|
|
""" # noqa: E501
|
|
|
|
from __future__ import annotations
|
|
|
|
import inspect
|
|
import warnings
|
|
from abc import abstractmethod
|
|
from inspect import signature
|
|
from typing import Any, Awaitable, Callable, Dict, List, Optional, Tuple, Type, Union
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManager,
|
|
AsyncCallbackManagerForToolRun,
|
|
BaseCallbackManager,
|
|
CallbackManager,
|
|
CallbackManagerForToolRun,
|
|
Callbacks,
|
|
)
|
|
from langchain_core.load.serializable import Serializable
|
|
from langchain_core.pydantic_v1 import (
|
|
BaseModel,
|
|
Extra,
|
|
Field,
|
|
ValidationError,
|
|
create_model,
|
|
root_validator,
|
|
validate_arguments,
|
|
)
|
|
from langchain_core.runnables import (
|
|
Runnable,
|
|
RunnableConfig,
|
|
RunnableSerializable,
|
|
ensure_config,
|
|
)
|
|
from langchain_core.runnables.config import run_in_executor
|
|
|
|
|
|
class SchemaAnnotationError(TypeError):
|
|
"""Raised when 'args_schema' is missing or has an incorrect type annotation."""
|
|
|
|
|
|
def _create_subset_model(
|
|
name: str, model: Type[BaseModel], field_names: list
|
|
) -> Type[BaseModel]:
|
|
"""Create a pydantic model with only a subset of model's fields."""
|
|
fields = {}
|
|
for field_name in field_names:
|
|
field = model.__fields__[field_name]
|
|
t = (
|
|
# this isn't perfect but should work for most functions
|
|
field.outer_type_
|
|
if field.required and not field.allow_none
|
|
else Optional[field.outer_type_]
|
|
)
|
|
fields[field_name] = (t, field.field_info)
|
|
rtn = create_model(name, **fields) # type: ignore
|
|
return rtn
|
|
|
|
|
|
def _get_filtered_args(
|
|
inferred_model: Type[BaseModel],
|
|
func: Callable,
|
|
) -> dict:
|
|
"""Get the arguments from a function's signature."""
|
|
schema = inferred_model.schema()["properties"]
|
|
valid_keys = signature(func).parameters
|
|
return {k: schema[k] for k in valid_keys if k not in ("run_manager", "callbacks")}
|
|
|
|
|
|
class _SchemaConfig:
|
|
"""Configuration for the pydantic model."""
|
|
|
|
extra: Any = Extra.forbid
|
|
arbitrary_types_allowed: bool = True
|
|
|
|
|
|
def create_schema_from_function(
|
|
model_name: str,
|
|
func: Callable,
|
|
) -> Type[BaseModel]:
|
|
"""Create a pydantic schema from a function's signature.
|
|
Args:
|
|
model_name: Name to assign to the generated pydandic schema
|
|
func: Function to generate the schema from
|
|
Returns:
|
|
A pydantic model with the same arguments as the function
|
|
"""
|
|
# https://docs.pydantic.dev/latest/usage/validation_decorator/
|
|
validated = validate_arguments(func, config=_SchemaConfig) # type: ignore
|
|
inferred_model = validated.model # type: ignore
|
|
if "run_manager" in inferred_model.__fields__:
|
|
del inferred_model.__fields__["run_manager"]
|
|
if "callbacks" in inferred_model.__fields__:
|
|
del inferred_model.__fields__["callbacks"]
|
|
# Pydantic adds placeholder virtual fields we need to strip
|
|
valid_properties = _get_filtered_args(inferred_model, func)
|
|
return _create_subset_model(
|
|
f"{model_name}Schema", inferred_model, list(valid_properties)
|
|
)
|
|
|
|
|
|
class ToolException(Exception):
|
|
"""Optional exception that tool throws when execution error occurs.
|
|
|
|
When this exception is thrown, the agent will not stop working,
|
|
but it will handle the exception according to the handle_tool_error
|
|
variable of the tool, and the processing result will be returned
|
|
to the agent as observation, and printed in red on the console.
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
class BaseTool(RunnableSerializable[Union[str, Dict], Any]):
|
|
"""Interface LangChain tools must implement."""
|
|
|
|
def __init_subclass__(cls, **kwargs: Any) -> None:
|
|
"""Create the definition of the new tool class."""
|
|
super().__init_subclass__(**kwargs)
|
|
|
|
args_schema_type = cls.__annotations__.get("args_schema", None)
|
|
|
|
if args_schema_type is not None and args_schema_type == BaseModel:
|
|
# Throw errors for common mis-annotations.
|
|
# TODO: Use get_args / get_origin and fully
|
|
# specify valid annotations.
|
|
typehint_mandate = """
|
|
class ChildTool(BaseTool):
|
|
...
|
|
args_schema: Type[BaseModel] = SchemaClass
|
|
..."""
|
|
name = cls.__name__
|
|
raise SchemaAnnotationError(
|
|
f"Tool definition for {name} must include valid type annotations"
|
|
f" for argument 'args_schema' to behave as expected.\n"
|
|
f"Expected annotation of 'Type[BaseModel]'"
|
|
f" but got '{args_schema_type}'.\n"
|
|
f"Expected class looks like:\n"
|
|
f"{typehint_mandate}"
|
|
)
|
|
|
|
name: str
|
|
"""The unique name of the tool that clearly communicates its purpose."""
|
|
description: str
|
|
"""Used to tell the model how/when/why to use the tool.
|
|
|
|
You can provide few-shot examples as a part of the description.
|
|
"""
|
|
args_schema: Optional[Type[BaseModel]] = None
|
|
"""Pydantic model class to validate and parse the tool's input arguments."""
|
|
return_direct: bool = False
|
|
"""Whether to return the tool's output directly. Setting this to True means
|
|
|
|
that after the tool is called, the AgentExecutor will stop looping.
|
|
"""
|
|
verbose: bool = False
|
|
"""Whether to log the tool's progress."""
|
|
|
|
callbacks: Callbacks = Field(default=None, exclude=True)
|
|
"""Callbacks to be called during tool execution."""
|
|
callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True)
|
|
"""Deprecated. Please use callbacks instead."""
|
|
tags: Optional[List[str]] = None
|
|
"""Optional list of tags associated with the tool. Defaults to None
|
|
These tags will be associated with each call to this tool,
|
|
and passed as arguments to the handlers defined in `callbacks`.
|
|
You can use these to eg identify a specific instance of a tool with its use case.
|
|
"""
|
|
metadata: Optional[Dict[str, Any]] = None
|
|
"""Optional metadata associated with the tool. Defaults to None
|
|
This metadata will be associated with each call to this tool,
|
|
and passed as arguments to the handlers defined in `callbacks`.
|
|
You can use these to eg identify a specific instance of a tool with its use case.
|
|
"""
|
|
|
|
handle_tool_error: Optional[
|
|
Union[bool, str, Callable[[ToolException], str]]
|
|
] = False
|
|
"""Handle the content of the ToolException thrown."""
|
|
|
|
handle_validation_error: Optional[
|
|
Union[bool, str, Callable[[ValidationError], str]]
|
|
] = False
|
|
"""Handle the content of the ValidationError thrown."""
|
|
|
|
class Config(Serializable.Config):
|
|
"""Configuration for this pydantic object."""
|
|
|
|
arbitrary_types_allowed = True
|
|
|
|
@property
|
|
def is_single_input(self) -> bool:
|
|
"""Whether the tool only accepts a single input."""
|
|
keys = {k for k in self.args if k != "kwargs"}
|
|
return len(keys) == 1
|
|
|
|
@property
|
|
def args(self) -> dict:
|
|
if self.args_schema is not None:
|
|
return self.args_schema.schema()["properties"]
|
|
else:
|
|
schema = create_schema_from_function(self.name, self._run)
|
|
return schema.schema()["properties"]
|
|
|
|
# --- Runnable ---
|
|
|
|
def get_input_schema(
|
|
self, config: Optional[RunnableConfig] = None
|
|
) -> Type[BaseModel]:
|
|
"""The tool's input schema."""
|
|
if self.args_schema is not None:
|
|
return self.args_schema
|
|
else:
|
|
return create_schema_from_function(self.name, self._run)
|
|
|
|
def invoke(
|
|
self,
|
|
input: Union[str, Dict],
|
|
config: Optional[RunnableConfig] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
config = ensure_config(config)
|
|
return self.run(
|
|
input,
|
|
callbacks=config.get("callbacks"),
|
|
tags=config.get("tags"),
|
|
metadata=config.get("metadata"),
|
|
run_name=config.get("run_name"),
|
|
**kwargs,
|
|
)
|
|
|
|
async def ainvoke(
|
|
self,
|
|
input: Union[str, Dict],
|
|
config: Optional[RunnableConfig] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
config = ensure_config(config)
|
|
return await self.arun(
|
|
input,
|
|
callbacks=config.get("callbacks"),
|
|
tags=config.get("tags"),
|
|
metadata=config.get("metadata"),
|
|
run_name=config.get("run_name"),
|
|
**kwargs,
|
|
)
|
|
|
|
# --- Tool ---
|
|
|
|
def _parse_input(
|
|
self,
|
|
tool_input: Union[str, Dict],
|
|
) -> Union[str, Dict[str, Any]]:
|
|
"""Convert tool input to pydantic model."""
|
|
input_args = self.args_schema
|
|
if isinstance(tool_input, str):
|
|
if input_args is not None:
|
|
key_ = next(iter(input_args.__fields__.keys()))
|
|
input_args.validate({key_: tool_input})
|
|
return tool_input
|
|
else:
|
|
if input_args is not None:
|
|
result = input_args.parse_obj(tool_input)
|
|
return {
|
|
k: getattr(result, k)
|
|
for k, v in result.dict().items()
|
|
if k in tool_input
|
|
}
|
|
return tool_input
|
|
|
|
@root_validator()
|
|
def raise_deprecation(cls, values: Dict) -> Dict:
|
|
"""Raise deprecation warning if callback_manager is used."""
|
|
if values.get("callback_manager") is not None:
|
|
warnings.warn(
|
|
"callback_manager is deprecated. Please use callbacks instead.",
|
|
DeprecationWarning,
|
|
)
|
|
values["callbacks"] = values.pop("callback_manager", None)
|
|
return values
|
|
|
|
@abstractmethod
|
|
def _run(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use the tool.
|
|
|
|
Add run_manager: Optional[CallbackManagerForToolRun] = None
|
|
to child implementations to enable tracing,
|
|
"""
|
|
|
|
async def _arun(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use the tool asynchronously.
|
|
|
|
Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None
|
|
to child implementations to enable tracing,
|
|
"""
|
|
return await run_in_executor(None, self._run, *args, **kwargs)
|
|
|
|
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
|
|
# For backwards compatibility, if run_input is a string,
|
|
# pass as a positional argument.
|
|
if isinstance(tool_input, str):
|
|
return (tool_input,), {}
|
|
else:
|
|
return (), tool_input
|
|
|
|
def run(
|
|
self,
|
|
tool_input: Union[str, Dict[str, Any]],
|
|
verbose: Optional[bool] = None,
|
|
start_color: Optional[str] = "green",
|
|
color: Optional[str] = "green",
|
|
callbacks: Callbacks = None,
|
|
*,
|
|
tags: Optional[List[str]] = None,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
run_name: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Run the tool."""
|
|
if not self.verbose and verbose is not None:
|
|
verbose_ = verbose
|
|
else:
|
|
verbose_ = self.verbose
|
|
callback_manager = CallbackManager.configure(
|
|
callbacks,
|
|
self.callbacks,
|
|
verbose_,
|
|
tags,
|
|
self.tags,
|
|
metadata,
|
|
self.metadata,
|
|
)
|
|
# TODO: maybe also pass through run_manager is _run supports kwargs
|
|
new_arg_supported = signature(self._run).parameters.get("run_manager")
|
|
run_manager = callback_manager.on_tool_start(
|
|
{"name": self.name, "description": self.description},
|
|
tool_input if isinstance(tool_input, str) else str(tool_input),
|
|
color=start_color,
|
|
name=run_name,
|
|
# Inputs by definition should always be dicts.
|
|
# For now, it's unclear whether this assumption is ever violated,
|
|
# but if it is we will send a `None` value to the callback instead
|
|
# And will need to address issue via a patch.
|
|
inputs=None if isinstance(tool_input, str) else tool_input,
|
|
**kwargs,
|
|
)
|
|
try:
|
|
parsed_input = self._parse_input(tool_input)
|
|
tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)
|
|
observation = (
|
|
self._run(*tool_args, run_manager=run_manager, **tool_kwargs)
|
|
if new_arg_supported
|
|
else self._run(*tool_args, **tool_kwargs)
|
|
)
|
|
except ValidationError as e:
|
|
if not self.handle_validation_error:
|
|
raise e
|
|
elif isinstance(self.handle_validation_error, bool):
|
|
observation = "Tool input validation error"
|
|
elif isinstance(self.handle_validation_error, str):
|
|
observation = self.handle_validation_error
|
|
elif callable(self.handle_validation_error):
|
|
observation = self.handle_validation_error(e)
|
|
else:
|
|
raise ValueError(
|
|
f"Got unexpected type of `handle_validation_error`. Expected bool, "
|
|
f"str or callable. Received: {self.handle_validation_error}"
|
|
)
|
|
return observation
|
|
except ToolException as e:
|
|
if not self.handle_tool_error:
|
|
run_manager.on_tool_error(e)
|
|
raise e
|
|
elif isinstance(self.handle_tool_error, bool):
|
|
if e.args:
|
|
observation = e.args[0]
|
|
else:
|
|
observation = "Tool execution error"
|
|
elif isinstance(self.handle_tool_error, str):
|
|
observation = self.handle_tool_error
|
|
elif callable(self.handle_tool_error):
|
|
observation = self.handle_tool_error(e)
|
|
else:
|
|
raise ValueError(
|
|
f"Got unexpected type of `handle_tool_error`. Expected bool, str "
|
|
f"or callable. Received: {self.handle_tool_error}"
|
|
)
|
|
run_manager.on_tool_end(
|
|
str(observation), color="red", name=self.name, **kwargs
|
|
)
|
|
return observation
|
|
except (Exception, KeyboardInterrupt) as e:
|
|
run_manager.on_tool_error(e)
|
|
raise e
|
|
else:
|
|
run_manager.on_tool_end(
|
|
str(observation), color=color, name=self.name, **kwargs
|
|
)
|
|
return observation
|
|
|
|
async def arun(
|
|
self,
|
|
tool_input: Union[str, Dict],
|
|
verbose: Optional[bool] = None,
|
|
start_color: Optional[str] = "green",
|
|
color: Optional[str] = "green",
|
|
callbacks: Callbacks = None,
|
|
*,
|
|
tags: Optional[List[str]] = None,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
run_name: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Run the tool asynchronously."""
|
|
if not self.verbose and verbose is not None:
|
|
verbose_ = verbose
|
|
else:
|
|
verbose_ = self.verbose
|
|
callback_manager = AsyncCallbackManager.configure(
|
|
callbacks,
|
|
self.callbacks,
|
|
verbose_,
|
|
tags,
|
|
self.tags,
|
|
metadata,
|
|
self.metadata,
|
|
)
|
|
new_arg_supported = signature(self._arun).parameters.get("run_manager")
|
|
run_manager = await callback_manager.on_tool_start(
|
|
{"name": self.name, "description": self.description},
|
|
tool_input if isinstance(tool_input, str) else str(tool_input),
|
|
color=start_color,
|
|
name=run_name,
|
|
inputs=tool_input,
|
|
**kwargs,
|
|
)
|
|
try:
|
|
parsed_input = self._parse_input(tool_input)
|
|
# We then call the tool on the tool input to get an observation
|
|
tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)
|
|
observation = (
|
|
await self._arun(*tool_args, run_manager=run_manager, **tool_kwargs)
|
|
if new_arg_supported
|
|
else await self._arun(*tool_args, **tool_kwargs)
|
|
)
|
|
except ValidationError as e:
|
|
if not self.handle_validation_error:
|
|
raise e
|
|
elif isinstance(self.handle_validation_error, bool):
|
|
observation = "Tool input validation error"
|
|
elif isinstance(self.handle_validation_error, str):
|
|
observation = self.handle_validation_error
|
|
elif callable(self.handle_validation_error):
|
|
observation = self.handle_validation_error(e)
|
|
else:
|
|
raise ValueError(
|
|
f"Got unexpected type of `handle_validation_error`. Expected bool, "
|
|
f"str or callable. Received: {self.handle_validation_error}"
|
|
)
|
|
return observation
|
|
except ToolException as e:
|
|
if not self.handle_tool_error:
|
|
await run_manager.on_tool_error(e)
|
|
raise e
|
|
elif isinstance(self.handle_tool_error, bool):
|
|
if e.args:
|
|
observation = e.args[0]
|
|
else:
|
|
observation = "Tool execution error"
|
|
elif isinstance(self.handle_tool_error, str):
|
|
observation = self.handle_tool_error
|
|
elif callable(self.handle_tool_error):
|
|
observation = self.handle_tool_error(e)
|
|
else:
|
|
raise ValueError(
|
|
f"Got unexpected type of `handle_tool_error`. Expected bool, str "
|
|
f"or callable. Received: {self.handle_tool_error}"
|
|
)
|
|
await run_manager.on_tool_end(
|
|
str(observation), color="red", name=self.name, **kwargs
|
|
)
|
|
return observation
|
|
except (Exception, KeyboardInterrupt) as e:
|
|
await run_manager.on_tool_error(e)
|
|
raise e
|
|
else:
|
|
await run_manager.on_tool_end(
|
|
str(observation), color=color, name=self.name, **kwargs
|
|
)
|
|
return observation
|
|
|
|
def __call__(self, tool_input: str, callbacks: Callbacks = None) -> str:
|
|
"""Make tool callable."""
|
|
return self.run(tool_input, callbacks=callbacks)
|
|
|
|
|
|
class Tool(BaseTool):
|
|
"""Tool that takes in function or coroutine directly."""
|
|
|
|
description: str = ""
|
|
func: Optional[Callable[..., str]]
|
|
"""The function to run when the tool is called."""
|
|
coroutine: Optional[Callable[..., Awaitable[str]]] = None
|
|
"""The asynchronous version of the function."""
|
|
|
|
# --- Runnable ---
|
|
|
|
async def ainvoke(
|
|
self,
|
|
input: Union[str, Dict],
|
|
config: Optional[RunnableConfig] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
if not self.coroutine:
|
|
# If the tool does not implement async, fall back to default implementation
|
|
return await run_in_executor(config, self.invoke, input, config, **kwargs)
|
|
|
|
return await super().ainvoke(input, config, **kwargs)
|
|
|
|
# --- Tool ---
|
|
|
|
@property
|
|
def args(self) -> dict:
|
|
"""The tool's input arguments."""
|
|
if self.args_schema is not None:
|
|
return self.args_schema.schema()["properties"]
|
|
# For backwards compatibility, if the function signature is ambiguous,
|
|
# assume it takes a single string input.
|
|
return {"tool_input": {"type": "string"}}
|
|
|
|
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
|
|
"""Convert tool input to pydantic model."""
|
|
args, kwargs = super()._to_args_and_kwargs(tool_input)
|
|
# For backwards compatibility. The tool must be run with a single input
|
|
all_args = list(args) + list(kwargs.values())
|
|
if len(all_args) != 1:
|
|
raise ToolException(
|
|
f"Too many arguments to single-input tool {self.name}."
|
|
f" Args: {all_args}"
|
|
)
|
|
return tuple(all_args), {}
|
|
|
|
def _run(
|
|
self,
|
|
*args: Any,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use the tool."""
|
|
if self.func:
|
|
new_argument_supported = signature(self.func).parameters.get("callbacks")
|
|
return (
|
|
self.func(
|
|
*args,
|
|
callbacks=run_manager.get_child() if run_manager else None,
|
|
**kwargs,
|
|
)
|
|
if new_argument_supported
|
|
else self.func(*args, **kwargs)
|
|
)
|
|
raise NotImplementedError("Tool does not support sync")
|
|
|
|
async def _arun(
|
|
self,
|
|
*args: Any,
|
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use the tool asynchronously."""
|
|
if self.coroutine:
|
|
new_argument_supported = signature(self.coroutine).parameters.get(
|
|
"callbacks"
|
|
)
|
|
return (
|
|
await self.coroutine(
|
|
*args,
|
|
callbacks=run_manager.get_child() if run_manager else None,
|
|
**kwargs,
|
|
)
|
|
if new_argument_supported
|
|
else await self.coroutine(*args, **kwargs)
|
|
)
|
|
else:
|
|
return await run_in_executor(
|
|
None,
|
|
self._run,
|
|
run_manager=run_manager.get_sync() if run_manager else None,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
# TODO: this is for backwards compatibility, remove in future
|
|
def __init__(
|
|
self, name: str, func: Optional[Callable], description: str, **kwargs: Any
|
|
) -> None:
|
|
"""Initialize tool."""
|
|
super(Tool, self).__init__(
|
|
name=name, func=func, description=description, **kwargs
|
|
)
|
|
|
|
@classmethod
|
|
def from_function(
|
|
cls,
|
|
func: Optional[Callable],
|
|
name: str, # We keep these required to support backwards compatibility
|
|
description: str,
|
|
return_direct: bool = False,
|
|
args_schema: Optional[Type[BaseModel]] = None,
|
|
coroutine: Optional[
|
|
Callable[..., Awaitable[Any]]
|
|
] = None, # This is last for compatibility, but should be after func
|
|
**kwargs: Any,
|
|
) -> Tool:
|
|
"""Initialize tool from a function."""
|
|
if func is None and coroutine is None:
|
|
raise ValueError("Function and/or coroutine must be provided")
|
|
return cls(
|
|
name=name,
|
|
func=func,
|
|
coroutine=coroutine,
|
|
description=description,
|
|
return_direct=return_direct,
|
|
args_schema=args_schema,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
class StructuredTool(BaseTool):
|
|
"""Tool that can operate on any number of inputs."""
|
|
|
|
description: str = ""
|
|
args_schema: Type[BaseModel] = Field(..., description="The tool schema.")
|
|
"""The input arguments' schema."""
|
|
func: Optional[Callable[..., Any]]
|
|
"""The function to run when the tool is called."""
|
|
coroutine: Optional[Callable[..., Awaitable[Any]]] = None
|
|
"""The asynchronous version of the function."""
|
|
|
|
# --- Runnable ---
|
|
|
|
async def ainvoke(
|
|
self,
|
|
input: Union[str, Dict],
|
|
config: Optional[RunnableConfig] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
if not self.coroutine:
|
|
# If the tool does not implement async, fall back to default implementation
|
|
return await run_in_executor(config, self.invoke, input, config, **kwargs)
|
|
|
|
return await super().ainvoke(input, config, **kwargs)
|
|
|
|
# --- Tool ---
|
|
|
|
@property
|
|
def args(self) -> dict:
|
|
"""The tool's input arguments."""
|
|
return self.args_schema.schema()["properties"]
|
|
|
|
def _run(
|
|
self,
|
|
*args: Any,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use the tool."""
|
|
if self.func:
|
|
new_argument_supported = signature(self.func).parameters.get("callbacks")
|
|
return (
|
|
self.func(
|
|
*args,
|
|
callbacks=run_manager.get_child() if run_manager else None,
|
|
**kwargs,
|
|
)
|
|
if new_argument_supported
|
|
else self.func(*args, **kwargs)
|
|
)
|
|
raise NotImplementedError("Tool does not support sync")
|
|
|
|
async def _arun(
|
|
self,
|
|
*args: Any,
|
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Use the tool asynchronously."""
|
|
if self.coroutine:
|
|
new_argument_supported = signature(self.coroutine).parameters.get(
|
|
"callbacks"
|
|
)
|
|
return (
|
|
await self.coroutine(
|
|
*args,
|
|
callbacks=run_manager.get_child() if run_manager else None,
|
|
**kwargs,
|
|
)
|
|
if new_argument_supported
|
|
else await self.coroutine(*args, **kwargs)
|
|
)
|
|
return await run_in_executor(
|
|
None,
|
|
self._run,
|
|
run_manager=run_manager.get_sync() if run_manager else None,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_function(
|
|
cls,
|
|
func: Optional[Callable] = None,
|
|
coroutine: Optional[Callable[..., Awaitable[Any]]] = None,
|
|
name: Optional[str] = None,
|
|
description: Optional[str] = None,
|
|
return_direct: bool = False,
|
|
args_schema: Optional[Type[BaseModel]] = None,
|
|
infer_schema: bool = True,
|
|
**kwargs: Any,
|
|
) -> StructuredTool:
|
|
"""Create tool from a given function.
|
|
|
|
A classmethod that helps to create a tool from a function.
|
|
|
|
Args:
|
|
func: The function from which to create a tool
|
|
coroutine: The async function from which to create a tool
|
|
name: The name of the tool. Defaults to the function name
|
|
description: The description of the tool. Defaults to the function docstring
|
|
return_direct: Whether to return the result directly or as a callback
|
|
args_schema: The schema of the tool's input arguments
|
|
infer_schema: Whether to infer the schema from the function's signature
|
|
**kwargs: Additional arguments to pass to the tool
|
|
|
|
Returns:
|
|
The tool
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
def add(a: int, b: int) -> int:
|
|
\"\"\"Add two numbers\"\"\"
|
|
return a + b
|
|
tool = StructuredTool.from_function(add)
|
|
tool.run(1, 2) # 3
|
|
"""
|
|
|
|
if func is not None:
|
|
source_function = func
|
|
elif coroutine is not None:
|
|
source_function = coroutine
|
|
else:
|
|
raise ValueError("Function and/or coroutine must be provided")
|
|
name = name or source_function.__name__
|
|
description = description or source_function.__doc__
|
|
if description is None:
|
|
raise ValueError(
|
|
"Function must have a docstring if description not provided."
|
|
)
|
|
|
|
# Description example:
|
|
# search_api(query: str) - Searches the API for the query.
|
|
sig = signature(source_function)
|
|
description = f"{name}{sig} - {description.strip()}"
|
|
_args_schema = args_schema
|
|
if _args_schema is None and infer_schema:
|
|
# schema name is appended within function
|
|
_args_schema = create_schema_from_function(name, source_function)
|
|
return cls(
|
|
name=name,
|
|
func=func,
|
|
coroutine=coroutine,
|
|
args_schema=_args_schema,
|
|
description=description,
|
|
return_direct=return_direct,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
def tool(
|
|
*args: Union[str, Callable, Runnable],
|
|
return_direct: bool = False,
|
|
args_schema: Optional[Type[BaseModel]] = None,
|
|
infer_schema: bool = True,
|
|
) -> Callable:
|
|
"""Make tools out of functions, can be used with or without arguments.
|
|
|
|
Args:
|
|
*args: The arguments to the tool.
|
|
return_direct: Whether to return directly from the tool rather
|
|
than continuing the agent loop.
|
|
args_schema: optional argument schema for user to specify
|
|
infer_schema: Whether to infer the schema of the arguments from
|
|
the function's signature. This also makes the resultant tool
|
|
accept a dictionary input to its `run()` function.
|
|
|
|
Requires:
|
|
- Function must be of type (str) -> str
|
|
- Function must have a docstring
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
@tool
|
|
def search_api(query: str) -> str:
|
|
# Searches the API for the query.
|
|
return
|
|
|
|
@tool("search", return_direct=True)
|
|
def search_api(query: str) -> str:
|
|
# Searches the API for the query.
|
|
return
|
|
"""
|
|
|
|
def _make_with_name(tool_name: str) -> Callable:
|
|
def _make_tool(dec_func: Union[Callable, Runnable]) -> BaseTool:
|
|
if isinstance(dec_func, Runnable):
|
|
runnable = dec_func
|
|
|
|
if runnable.input_schema.schema().get("type") != "object":
|
|
raise ValueError("Runnable must have an object schema.")
|
|
|
|
async def ainvoke_wrapper(
|
|
callbacks: Optional[Callbacks] = None, **kwargs: Any
|
|
) -> Any:
|
|
return await runnable.ainvoke(kwargs, {"callbacks": callbacks})
|
|
|
|
def invoke_wrapper(
|
|
callbacks: Optional[Callbacks] = None, **kwargs: Any
|
|
) -> Any:
|
|
return runnable.invoke(kwargs, {"callbacks": callbacks})
|
|
|
|
coroutine = ainvoke_wrapper
|
|
func = invoke_wrapper
|
|
schema: Optional[Type[BaseModel]] = runnable.input_schema
|
|
description = repr(runnable)
|
|
elif inspect.iscoroutinefunction(dec_func):
|
|
coroutine = dec_func
|
|
func = None
|
|
schema = args_schema
|
|
description = None
|
|
else:
|
|
coroutine = None
|
|
func = dec_func
|
|
schema = args_schema
|
|
description = None
|
|
|
|
if infer_schema or args_schema is not None:
|
|
return StructuredTool.from_function(
|
|
func,
|
|
coroutine,
|
|
name=tool_name,
|
|
description=description,
|
|
return_direct=return_direct,
|
|
args_schema=schema,
|
|
infer_schema=infer_schema,
|
|
)
|
|
# If someone doesn't want a schema applied, we must treat it as
|
|
# a simple string->string function
|
|
if func.__doc__ is None:
|
|
raise ValueError(
|
|
"Function must have a docstring if "
|
|
"description not provided and infer_schema is False."
|
|
)
|
|
return Tool(
|
|
name=tool_name,
|
|
func=func,
|
|
description=f"{tool_name} tool",
|
|
return_direct=return_direct,
|
|
coroutine=coroutine,
|
|
)
|
|
|
|
return _make_tool
|
|
|
|
if len(args) == 2 and isinstance(args[0], str) and isinstance(args[1], Runnable):
|
|
return _make_with_name(args[0])(args[1])
|
|
elif len(args) == 1 and isinstance(args[0], str):
|
|
# if the argument is a string, then we use the string as the tool name
|
|
# Example usage: @tool("search", return_direct=True)
|
|
return _make_with_name(args[0])
|
|
elif len(args) == 1 and callable(args[0]):
|
|
# if the argument is a function, then we use the function name as the tool name
|
|
# Example usage: @tool
|
|
return _make_with_name(args[0].__name__)(args[0])
|
|
elif len(args) == 0:
|
|
# if there are no arguments, then we use the function name as the tool name
|
|
# Example usage: @tool(return_direct=True)
|
|
def _partial(func: Callable[[str], str]) -> BaseTool:
|
|
return _make_with_name(func.__name__)(func)
|
|
|
|
return _partial
|
|
else:
|
|
raise ValueError("Too many arguments for tool decorator")
|