langchain/libs/community/tests/unit_tests/chat_models/test_bedrock.py
Leonid Ganeline 4cb5f4c353
community[patch]: import flattening fix (#20110)
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code.

See #20050 as a template for this PR.
- As a byproduct: Added 3 missed `test_imports`.
- Added missed `SolarChat` in to __init___.py Added it into test_import
ut.
- Added `# type: ignore` to fix linting. It is not clear, why linting
errors appear after ^ changes.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-04-10 13:01:19 -04:00

90 lines
2.8 KiB
Python

"""Test Anthropic Chat API wrapper."""
from typing import List
from unittest.mock import MagicMock
import pytest
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_community.chat_models import BedrockChat
from langchain_community.chat_models.meta import convert_messages_to_prompt_llama
@pytest.mark.parametrize(
("messages", "expected"),
[
([HumanMessage(content="Hello")], "[INST] Hello [/INST]"),
(
[HumanMessage(content="Hello"), AIMessage(content="Answer:")],
"[INST] Hello [/INST]\nAnswer:",
),
(
[
SystemMessage(content="You're an assistant"),
HumanMessage(content="Hello"),
AIMessage(content="Answer:"),
],
"<<SYS>> You're an assistant <</SYS>>\n[INST] Hello [/INST]\nAnswer:",
),
],
)
def test_formatting(messages: List[BaseMessage], expected: str) -> None:
result = convert_messages_to_prompt_llama(messages)
assert result == expected
@pytest.mark.parametrize(
"model_id",
["anthropic.claude-v2", "amazon.titan-text-express-v1"],
)
def test_different_models_bedrock(model_id: str) -> None:
provider = model_id.split(".")[0]
client = MagicMock()
respbody = MagicMock()
if provider == "anthropic":
respbody.read.return_value = MagicMock(
decode=MagicMock(return_value=b'{"completion":"Hi back"}'),
)
client.invoke_model.return_value = {"body": respbody}
elif provider == "amazon":
respbody.read.return_value = '{"results": [{"outputText": "Hi back"}]}'
client.invoke_model.return_value = {"body": respbody}
model = BedrockChat(model_id=model_id, client=client)
# should not throw an error
model.invoke("hello there")
def test_bedrock_combine_llm_output() -> None:
model_id = "anthropic.claude-3-haiku-20240307-v1:0"
client = MagicMock()
llm_outputs = [
{
"model_id": "anthropic.claude-3-haiku-20240307-v1:0",
"usage": {
"completion_tokens": 1,
"prompt_tokens": 2,
"total_tokens": 3,
},
},
{
"model_id": "anthropic.claude-3-haiku-20240307-v1:0",
"usage": {
"completion_tokens": 1,
"prompt_tokens": 2,
"total_tokens": 3,
},
},
]
model = BedrockChat(model_id=model_id, client=client)
final_output = model._combine_llm_outputs(llm_outputs) # type: ignore[arg-type]
assert final_output["model_id"] == model_id
assert final_output["usage"]["completion_tokens"] == 2
assert final_output["usage"]["prompt_tokens"] == 4
assert final_output["usage"]["total_tokens"] == 6