mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
4cb5f4c353
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code. See #20050 as a template for this PR. - As a byproduct: Added 3 missed `test_imports`. - Added missed `SolarChat` in to __init___.py Added it into test_import ut. - Added `# type: ignore` to fix linting. It is not clear, why linting errors appear after ^ changes. --------- Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
164 lines
5.4 KiB
Python
164 lines
5.4 KiB
Python
"""Test Bedrock chat model."""
|
|
from typing import Any, cast
|
|
|
|
import pytest
|
|
from langchain_core.callbacks import CallbackManager
|
|
from langchain_core.messages import (
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, LLMResult
|
|
|
|
from langchain_community.chat_models import BedrockChat
|
|
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
|
|
|
|
|
@pytest.fixture
|
|
def chat() -> BedrockChat:
|
|
return BedrockChat(model_id="anthropic.claude-v2", model_kwargs={"temperature": 0})
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_bedrock(chat: BedrockChat) -> None:
|
|
"""Test BedrockChat wrapper."""
|
|
system = SystemMessage(content="You are a helpful assistant.")
|
|
human = HumanMessage(content="Hello")
|
|
response = chat([system, human])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_bedrock_generate(chat: BedrockChat) -> None:
|
|
"""Test BedrockChat wrapper with generate."""
|
|
message = HumanMessage(content="Hello")
|
|
response = chat.generate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
for generations in response.generations:
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_bedrock_generate_with_token_usage(chat: BedrockChat) -> None:
|
|
"""Test BedrockChat wrapper with generate."""
|
|
message = HumanMessage(content="Hello")
|
|
response = chat.generate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert isinstance(response.llm_output, dict)
|
|
|
|
usage = response.llm_output["usage"]
|
|
assert usage["prompt_tokens"] == 20
|
|
assert usage["completion_tokens"] > 0
|
|
assert usage["total_tokens"] > 0
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_bedrock_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = BedrockChat(
|
|
model_id="anthropic.claude-v2",
|
|
streaming=True,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat([message])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, BaseMessage)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_bedrock_streaming_generation_info() -> None:
|
|
"""Test that generation info is preserved when streaming."""
|
|
|
|
class _FakeCallback(FakeCallbackHandler):
|
|
saved_things: dict = {}
|
|
|
|
def on_llm_end(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
# Save the generation
|
|
self.saved_things["generation"] = args[0]
|
|
|
|
callback = _FakeCallback()
|
|
callback_manager = CallbackManager([callback])
|
|
chat = BedrockChat(
|
|
model_id="anthropic.claude-v2",
|
|
callback_manager=callback_manager,
|
|
)
|
|
list(chat.stream("hi"))
|
|
generation = callback.saved_things["generation"]
|
|
# `Hello!` is two tokens, assert that that is what is returned
|
|
assert generation.generations[0][0].text == "Hello!"
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_bedrock_streaming(chat: BedrockChat) -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
|
|
full = None
|
|
for token in chat.stream("I'm Pickle Rick"):
|
|
full = token if full is None else full + token # type: ignore[operator]
|
|
assert isinstance(token.content, str)
|
|
assert isinstance(cast(AIMessageChunk, full).content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_bedrock_astream(chat: BedrockChat) -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
|
|
async for token in chat.astream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_bedrock_abatch(chat: BedrockChat) -> None:
|
|
"""Test streaming tokens from BedrockChat."""
|
|
result = await chat.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_bedrock_abatch_tags(chat: BedrockChat) -> None:
|
|
"""Test batch tokens from BedrockChat."""
|
|
result = await chat.abatch(
|
|
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
|
|
)
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_bedrock_batch(chat: BedrockChat) -> None:
|
|
"""Test batch tokens from BedrockChat."""
|
|
result = chat.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_bedrock_ainvoke(chat: BedrockChat) -> None:
|
|
"""Test invoke tokens from BedrockChat."""
|
|
result = await chat.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
|
assert isinstance(result.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_bedrock_invoke(chat: BedrockChat) -> None:
|
|
"""Test invoke tokens from BedrockChat."""
|
|
result = chat.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
|
assert isinstance(result.content, str)
|
|
assert all([k in result.response_metadata for k in ("usage", "model_id")])
|
|
assert result.response_metadata["usage"]["prompt_tokens"] == 13
|