langchain/templates/rag-vectara-multiquery/rag_vectara_multiquery.ipynb
Erick Friis a26105de8e
vectara rag mq (#13214)
Description: another Vectara template for MultiQuery RAG flow
Twitter handle: @ofermend

Fixes to #13106

---------

Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
2023-11-10 10:08:45 -08:00

58 lines
1.2 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "8692a430",
"metadata": {},
"source": [
"# Run Template\n",
"\n",
"In `server.py`, set -\n",
"```\n",
"add_routes(app, chain_ext, path=\"/rag-vectara-multiquery\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "41db5e30",
"metadata": {},
"outputs": [],
"source": [
"from langserve.client import RemoteRunnable\n",
"\n",
"rag_app_vectara = RemoteRunnable(\"http://localhost:8000/rag-vectara-multiquery\")\n",
"rag_app_vectara.invoke(\"How does agent memory work?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.6 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
},
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}