mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
85 lines
2.9 KiB
Python
85 lines
2.9 KiB
Python
from pathlib import Path
|
|
|
|
import pandas as pd
|
|
from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
from langchain.pydantic_v1 import BaseModel, Field
|
|
from langchain.tools.retriever import create_retriever_tool
|
|
from langchain.vectorstores import FAISS
|
|
from langchain_experimental.tools import PythonAstREPLTool
|
|
|
|
MAIN_DIR = Path(__file__).parents[1]
|
|
|
|
pd.set_option("display.max_rows", 20)
|
|
pd.set_option("display.max_columns", 20)
|
|
|
|
embedding_model = OpenAIEmbeddings()
|
|
vectorstore = FAISS.load_local(MAIN_DIR / "titanic_data", embedding_model)
|
|
retriever_tool = create_retriever_tool(
|
|
vectorstore.as_retriever(), "person_name_search", "Search for a person by name"
|
|
)
|
|
|
|
|
|
TEMPLATE = """You are working with a pandas dataframe in Python. The name of the dataframe is `df`.
|
|
It is important to understand the attributes of the dataframe before working with it. This is the result of running `df.head().to_markdown()`
|
|
|
|
<df>
|
|
{dhead}
|
|
</df>
|
|
|
|
You are not meant to use only these rows to answer questions - they are meant as a way of telling you about the shape and schema of the dataframe.
|
|
You also do not have use only the information here to answer questions - you can run intermediate queries to do exporatory data analysis to give you more information as needed.
|
|
|
|
You have a tool called `person_name_search` through which you can lookup a person by name and find the records corresponding to people with similar name as the query.
|
|
You should only really use this if your search term contains a persons name. Otherwise, try to solve it with code.
|
|
|
|
For example:
|
|
|
|
<question>How old is Jane?</question>
|
|
<logic>Use `person_name_search` since you can use the query `Jane`</logic>
|
|
|
|
<question>Who has id 320</question>
|
|
<logic>Use `python_repl` since even though the question is about a person, you don't know their name so you can't include it.</logic>
|
|
""" # noqa: E501
|
|
|
|
|
|
class PythonInputs(BaseModel):
|
|
query: str = Field(description="code snippet to run")
|
|
|
|
|
|
df = pd.read_csv(MAIN_DIR / "titanic.csv")
|
|
template = TEMPLATE.format(dhead=df.head().to_markdown())
|
|
|
|
prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
("system", template),
|
|
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
|
("human", "{input}"),
|
|
]
|
|
)
|
|
|
|
repl = PythonAstREPLTool(
|
|
locals={"df": df},
|
|
name="python_repl",
|
|
description="Runs code and returns the output of the final line",
|
|
args_schema=PythonInputs,
|
|
)
|
|
tools = [repl, retriever_tool]
|
|
agent = OpenAIFunctionsAgent(
|
|
llm=ChatOpenAI(temperature=0, model="gpt-4"), prompt=prompt, tools=tools
|
|
)
|
|
agent_executor = AgentExecutor(
|
|
agent=agent, tools=tools, max_iterations=5, early_stopping_method="generate"
|
|
) | (lambda x: x["output"])
|
|
|
|
# Typing for playground inputs
|
|
|
|
|
|
class AgentInputs(BaseModel):
|
|
input: str
|
|
|
|
|
|
agent_executor = agent_executor.with_types(input_type=AgentInputs)
|