mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
129 lines
3.9 KiB
Plaintext
129 lines
3.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "6488fdaf",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Chat Prompt Template\n",
|
|
"\n",
|
|
"Chat Models takes a list of chat messages as input - this list commonly referred to as a prompt.\n",
|
|
"Typically this is not simply a hardcoded list of messages but rather a combination of a template, some examples, and user input.\n",
|
|
"LangChain provides several classes and functions to make constructing and working with prompts easy.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "7647a621",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.prompts import (\n",
|
|
" ChatPromptTemplate,\n",
|
|
" PromptTemplate,\n",
|
|
" SystemMessagePromptTemplate,\n",
|
|
" AIMessagePromptTemplate,\n",
|
|
" HumanMessagePromptTemplate,\n",
|
|
")\n",
|
|
"from langchain.schema import (\n",
|
|
" AIMessage,\n",
|
|
" HumanMessage,\n",
|
|
" SystemMessage\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "acb4a2f6",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.\n",
|
|
"\n",
|
|
"For convenience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "3124f5e9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"template=\"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
|
|
"system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
|
|
"human_template=\"{text}\"\n",
|
|
"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "9c7e2e6f",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}),\n",
|
|
" HumanMessage(content='I love programming.', additional_kwargs={})]"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])\n",
|
|
"\n",
|
|
"# get a chat completion from the formatted messages\n",
|
|
"chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_messages()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0dbdf94f",
|
|
"metadata": {},
|
|
"source": [
|
|
"If you wanted to construct the MessagePromptTemplate more directly, you could create a PromptTemplate outside and then pass it in, eg:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "5a8d249e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"prompt=PromptTemplate(\n",
|
|
" template=\"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
|
|
" input_variables=[\"input_language\", \"output_language\"],\n",
|
|
")\n",
|
|
"system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|