mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
455 lines
16 KiB
Python
455 lines
16 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
from pathlib import Path
|
|
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Union
|
|
|
|
import yaml
|
|
|
|
from langchain_experimental.data_anonymizer.base import (
|
|
DEFAULT_DEANONYMIZER_MATCHING_STRATEGY,
|
|
AnonymizerBase,
|
|
ReversibleAnonymizerBase,
|
|
)
|
|
from langchain_experimental.data_anonymizer.deanonymizer_mapping import (
|
|
DeanonymizerMapping,
|
|
MappingDataType,
|
|
create_anonymizer_mapping,
|
|
)
|
|
from langchain_experimental.data_anonymizer.deanonymizer_matching_strategies import (
|
|
exact_matching_strategy,
|
|
)
|
|
from langchain_experimental.data_anonymizer.faker_presidio_mapping import (
|
|
get_pseudoanonymizer_mapping,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from presidio_analyzer import AnalyzerEngine, EntityRecognizer
|
|
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
|
from presidio_anonymizer import AnonymizerEngine
|
|
from presidio_anonymizer.entities import OperatorConfig
|
|
|
|
|
|
def _import_analyzer_engine() -> "AnalyzerEngine":
|
|
try:
|
|
from presidio_analyzer import AnalyzerEngine
|
|
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import presidio_analyzer, please install with "
|
|
"`pip install presidio-analyzer`. You will also need to download a "
|
|
"spaCy model to use the analyzer, e.g. "
|
|
"`python -m spacy download en_core_web_lg`."
|
|
) from e
|
|
return AnalyzerEngine
|
|
|
|
|
|
def _import_nlp_engine_provider() -> "NlpEngineProvider":
|
|
try:
|
|
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
|
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import presidio_analyzer, please install with "
|
|
"`pip install presidio-analyzer`. You will also need to download a "
|
|
"spaCy model to use the analyzer, e.g. "
|
|
"`python -m spacy download en_core_web_lg`."
|
|
) from e
|
|
return NlpEngineProvider
|
|
|
|
|
|
def _import_anonymizer_engine() -> "AnonymizerEngine":
|
|
try:
|
|
from presidio_anonymizer import AnonymizerEngine
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import presidio_anonymizer, please install with "
|
|
"`pip install presidio-anonymizer`."
|
|
) from e
|
|
return AnonymizerEngine
|
|
|
|
|
|
def _import_operator_config() -> "OperatorConfig":
|
|
try:
|
|
from presidio_anonymizer.entities import OperatorConfig
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import presidio_anonymizer, please install with "
|
|
"`pip install presidio-anonymizer`."
|
|
) from e
|
|
return OperatorConfig
|
|
|
|
|
|
# Configuring Anonymizer for multiple languages
|
|
# Detailed description and examples can be found here:
|
|
# langchain/docs/extras/guides/privacy/multi_language_anonymization.ipynb
|
|
DEFAULT_LANGUAGES_CONFIG = {
|
|
# You can also use Stanza or transformers library.
|
|
# See https://microsoft.github.io/presidio/analyzer/customizing_nlp_models/
|
|
"nlp_engine_name": "spacy",
|
|
"models": [
|
|
{"lang_code": "en", "model_name": "en_core_web_lg"},
|
|
# {"lang_code": "de", "model_name": "de_core_news_md"},
|
|
# {"lang_code": "es", "model_name": "es_core_news_md"},
|
|
# ...
|
|
# List of available models: https://spacy.io/usage/models
|
|
],
|
|
}
|
|
|
|
|
|
class PresidioAnonymizerBase(AnonymizerBase):
|
|
def __init__(
|
|
self,
|
|
analyzed_fields: Optional[List[str]] = None,
|
|
operators: Optional[Dict[str, OperatorConfig]] = None,
|
|
languages_config: Dict = DEFAULT_LANGUAGES_CONFIG,
|
|
add_default_faker_operators: bool = True,
|
|
faker_seed: Optional[int] = None,
|
|
):
|
|
"""
|
|
Args:
|
|
analyzed_fields: List of fields to detect and then anonymize.
|
|
Defaults to all entities supported by Microsoft Presidio.
|
|
operators: Operators to use for anonymization.
|
|
Operators allow for custom anonymization of detected PII.
|
|
Learn more:
|
|
https://microsoft.github.io/presidio/tutorial/10_simple_anonymization/
|
|
languages_config: Configuration for the NLP engine.
|
|
First language in the list will be used as the main language
|
|
in self.anonymize(...) when no language is specified.
|
|
Learn more:
|
|
https://microsoft.github.io/presidio/analyzer/customizing_nlp_models/
|
|
faker_seed: Seed used to initialize faker.
|
|
Defaults to None, in which case faker will be seeded randomly
|
|
and provide random values.
|
|
"""
|
|
OperatorConfig = _import_operator_config()
|
|
AnalyzerEngine = _import_analyzer_engine()
|
|
NlpEngineProvider = _import_nlp_engine_provider()
|
|
AnonymizerEngine = _import_anonymizer_engine()
|
|
|
|
self.analyzed_fields = (
|
|
analyzed_fields
|
|
if analyzed_fields is not None
|
|
else list(get_pseudoanonymizer_mapping().keys())
|
|
)
|
|
|
|
if add_default_faker_operators:
|
|
self.operators = {
|
|
field: OperatorConfig(
|
|
operator_name="custom", params={"lambda": faker_function}
|
|
)
|
|
for field, faker_function in get_pseudoanonymizer_mapping(
|
|
faker_seed
|
|
).items()
|
|
}
|
|
else:
|
|
self.operators = {}
|
|
|
|
if operators:
|
|
self.add_operators(operators)
|
|
|
|
provider = NlpEngineProvider(nlp_configuration=languages_config)
|
|
nlp_engine = provider.create_engine()
|
|
|
|
self.supported_languages = list(nlp_engine.nlp.keys())
|
|
|
|
self._analyzer = AnalyzerEngine(
|
|
supported_languages=self.supported_languages, nlp_engine=nlp_engine
|
|
)
|
|
self._anonymizer = AnonymizerEngine()
|
|
|
|
def add_recognizer(self, recognizer: EntityRecognizer) -> None:
|
|
"""Add a recognizer to the analyzer
|
|
|
|
Args:
|
|
recognizer: Recognizer to add to the analyzer.
|
|
"""
|
|
self._analyzer.registry.add_recognizer(recognizer)
|
|
self.analyzed_fields.extend(recognizer.supported_entities)
|
|
|
|
def add_operators(self, operators: Dict[str, OperatorConfig]) -> None:
|
|
"""Add operators to the anonymizer
|
|
|
|
Args:
|
|
operators: Operators to add to the anonymizer.
|
|
"""
|
|
self.operators.update(operators)
|
|
|
|
|
|
class PresidioAnonymizer(PresidioAnonymizerBase):
|
|
def _anonymize(
|
|
self,
|
|
text: str,
|
|
language: Optional[str] = None,
|
|
allow_list: Optional[List[str]] = None,
|
|
) -> str:
|
|
"""Anonymize text.
|
|
Each PII entity is replaced with a fake value.
|
|
Each time fake values will be different, as they are generated randomly.
|
|
|
|
PresidioAnonymizer has no built-in memory -
|
|
so it will not remember the effects of anonymizing previous texts.
|
|
>>> anonymizer = PresidioAnonymizer()
|
|
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
|
|
'My name is Noah Rhodes. Hi Noah Rhodes!'
|
|
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
|
|
'My name is Brett Russell. Hi Brett Russell!'
|
|
|
|
Args:
|
|
text: text to anonymize
|
|
language: language to use for analysis of PII
|
|
If None, the first (main) language in the list
|
|
of languages specified in the configuration will be used.
|
|
"""
|
|
if language is None:
|
|
language = self.supported_languages[0]
|
|
|
|
if language not in self.supported_languages:
|
|
raise ValueError(
|
|
f"Language '{language}' is not supported. "
|
|
f"Supported languages are: {self.supported_languages}. "
|
|
"Change your language configuration file to add more languages."
|
|
)
|
|
|
|
# Check supported entities for given language
|
|
# e.g. IT_FISCAL_CODE is not supported for English in Presidio by default
|
|
# If you want to use it, you need to add a recognizer manually
|
|
supported_entities = []
|
|
for recognizer in self._analyzer.get_recognizers(language):
|
|
recognizer_dict = recognizer.to_dict()
|
|
supported_entities.extend(
|
|
[recognizer_dict["supported_entity"]]
|
|
if "supported_entity" in recognizer_dict
|
|
else recognizer_dict["supported_entities"]
|
|
)
|
|
|
|
entities_to_analyze = list(
|
|
set(supported_entities).intersection(set(self.analyzed_fields))
|
|
)
|
|
|
|
analyzer_results = self._analyzer.analyze(
|
|
text,
|
|
entities=entities_to_analyze,
|
|
language=language,
|
|
allow_list=allow_list,
|
|
)
|
|
|
|
filtered_analyzer_results = (
|
|
self._anonymizer._remove_conflicts_and_get_text_manipulation_data(
|
|
analyzer_results
|
|
)
|
|
)
|
|
|
|
anonymizer_results = self._anonymizer.anonymize(
|
|
text,
|
|
analyzer_results=analyzer_results,
|
|
operators=self.operators,
|
|
)
|
|
|
|
anonymizer_mapping = create_anonymizer_mapping(
|
|
text,
|
|
filtered_analyzer_results,
|
|
anonymizer_results,
|
|
)
|
|
return exact_matching_strategy(text, anonymizer_mapping)
|
|
|
|
|
|
class PresidioReversibleAnonymizer(PresidioAnonymizerBase, ReversibleAnonymizerBase):
|
|
def __init__(
|
|
self,
|
|
analyzed_fields: Optional[List[str]] = None,
|
|
operators: Optional[Dict[str, OperatorConfig]] = None,
|
|
languages_config: Dict = DEFAULT_LANGUAGES_CONFIG,
|
|
add_default_faker_operators: bool = True,
|
|
faker_seed: Optional[int] = None,
|
|
):
|
|
super().__init__(
|
|
analyzed_fields,
|
|
operators,
|
|
languages_config,
|
|
add_default_faker_operators,
|
|
faker_seed,
|
|
)
|
|
self._deanonymizer_mapping = DeanonymizerMapping()
|
|
|
|
@property
|
|
def deanonymizer_mapping(self) -> MappingDataType:
|
|
"""Return the deanonymizer mapping"""
|
|
return self._deanonymizer_mapping.data
|
|
|
|
@property
|
|
def anonymizer_mapping(self) -> MappingDataType:
|
|
"""Return the anonymizer mapping
|
|
This is just the reverse version of the deanonymizer mapping."""
|
|
return {
|
|
key: {v: k for k, v in inner_dict.items()}
|
|
for key, inner_dict in self.deanonymizer_mapping.items()
|
|
}
|
|
|
|
def _anonymize(
|
|
self,
|
|
text: str,
|
|
language: Optional[str] = None,
|
|
allow_list: Optional[List[str]] = None,
|
|
) -> str:
|
|
"""Anonymize text.
|
|
Each PII entity is replaced with a fake value.
|
|
Each time fake values will be different, as they are generated randomly.
|
|
At the same time, we will create a mapping from each anonymized entity
|
|
back to its original text value.
|
|
|
|
Thanks to the built-in memory, all previously anonymised entities
|
|
will be remembered and replaced by the same fake values:
|
|
>>> anonymizer = PresidioReversibleAnonymizer()
|
|
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
|
|
'My name is Noah Rhodes. Hi Noah Rhodes!'
|
|
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
|
|
'My name is Noah Rhodes. Hi Noah Rhodes!'
|
|
|
|
Args:
|
|
text: text to anonymize
|
|
language: language to use for analysis of PII
|
|
If None, the first (main) language in the list
|
|
of languages specified in the configuration will be used.
|
|
"""
|
|
if language is None:
|
|
language = self.supported_languages[0]
|
|
|
|
if language not in self.supported_languages:
|
|
raise ValueError(
|
|
f"Language '{language}' is not supported. "
|
|
f"Supported languages are: {self.supported_languages}. "
|
|
"Change your language configuration file to add more languages."
|
|
)
|
|
|
|
# Check supported entities for given language
|
|
# e.g. IT_FISCAL_CODE is not supported for English in Presidio by default
|
|
# If you want to use it, you need to add a recognizer manually
|
|
supported_entities = []
|
|
for recognizer in self._analyzer.get_recognizers(language):
|
|
recognizer_dict = recognizer.to_dict()
|
|
supported_entities.extend(
|
|
[recognizer_dict["supported_entity"]]
|
|
if "supported_entity" in recognizer_dict
|
|
else recognizer_dict["supported_entities"]
|
|
)
|
|
|
|
entities_to_analyze = list(
|
|
set(supported_entities).intersection(set(self.analyzed_fields))
|
|
)
|
|
|
|
analyzer_results = self._analyzer.analyze(
|
|
text,
|
|
entities=entities_to_analyze,
|
|
language=language,
|
|
allow_list=allow_list,
|
|
)
|
|
|
|
filtered_analyzer_results = (
|
|
self._anonymizer._remove_conflicts_and_get_text_manipulation_data(
|
|
analyzer_results
|
|
)
|
|
)
|
|
|
|
anonymizer_results = self._anonymizer.anonymize(
|
|
text,
|
|
analyzer_results=analyzer_results,
|
|
operators=self.operators,
|
|
)
|
|
|
|
new_deanonymizer_mapping = create_anonymizer_mapping(
|
|
text,
|
|
filtered_analyzer_results,
|
|
anonymizer_results,
|
|
is_reversed=True,
|
|
)
|
|
self._deanonymizer_mapping.update(new_deanonymizer_mapping)
|
|
|
|
return exact_matching_strategy(text, self.anonymizer_mapping)
|
|
|
|
def _deanonymize(
|
|
self,
|
|
text_to_deanonymize: str,
|
|
deanonymizer_matching_strategy: Callable[
|
|
[str, MappingDataType], str
|
|
] = DEFAULT_DEANONYMIZER_MATCHING_STRATEGY,
|
|
) -> str:
|
|
"""Deanonymize text.
|
|
Each anonymized entity is replaced with its original value.
|
|
This method exploits the mapping created during the anonymization process.
|
|
|
|
Args:
|
|
text_to_deanonymize: text to deanonymize
|
|
deanonymizer_matching_strategy: function to use to match
|
|
anonymized entities with their original values and replace them.
|
|
"""
|
|
if not self._deanonymizer_mapping:
|
|
raise ValueError(
|
|
"Deanonymizer mapping is empty.",
|
|
"Please call anonymize() and anonymize some text first.",
|
|
)
|
|
|
|
text_to_deanonymize = deanonymizer_matching_strategy(
|
|
text_to_deanonymize, self.deanonymizer_mapping
|
|
)
|
|
|
|
return text_to_deanonymize
|
|
|
|
def reset_deanonymizer_mapping(self) -> None:
|
|
"""Reset the deanonymizer mapping"""
|
|
self._deanonymizer_mapping = DeanonymizerMapping()
|
|
|
|
def save_deanonymizer_mapping(self, file_path: Union[Path, str]) -> None:
|
|
"""Save the deanonymizer mapping to a JSON or YAML file.
|
|
|
|
Args:
|
|
file_path: Path to file to save the mapping to.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
anonymizer.save_deanonymizer_mapping(file_path="path/mapping.json")
|
|
"""
|
|
|
|
save_path = Path(file_path)
|
|
|
|
if save_path.suffix not in [".json", ".yaml"]:
|
|
raise ValueError(f"{save_path} must have an extension of .json or .yaml")
|
|
|
|
# Make sure parent directories exist
|
|
save_path.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
if save_path.suffix == ".json":
|
|
with open(save_path, "w") as f:
|
|
json.dump(self.deanonymizer_mapping, f, indent=2)
|
|
elif save_path.suffix == ".yaml":
|
|
with open(save_path, "w") as f:
|
|
yaml.dump(self.deanonymizer_mapping, f, default_flow_style=False)
|
|
|
|
def load_deanonymizer_mapping(self, file_path: Union[Path, str]) -> None:
|
|
"""Load the deanonymizer mapping from a JSON or YAML file.
|
|
|
|
Args:
|
|
file_path: Path to file to load the mapping from.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
anonymizer.load_deanonymizer_mapping(file_path="path/mapping.json")
|
|
"""
|
|
|
|
load_path = Path(file_path)
|
|
|
|
if load_path.suffix not in [".json", ".yaml"]:
|
|
raise ValueError(f"{load_path} must have an extension of .json or .yaml")
|
|
|
|
if load_path.suffix == ".json":
|
|
with open(load_path, "r") as f:
|
|
loaded_mapping = json.load(f)
|
|
elif load_path.suffix == ".yaml":
|
|
with open(load_path, "r") as f:
|
|
loaded_mapping = yaml.load(f, Loader=yaml.FullLoader)
|
|
|
|
self._deanonymizer_mapping.update(loaded_mapping)
|