mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
224 lines
7.7 KiB
Python
224 lines
7.7 KiB
Python
import logging
|
|
import threading
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
HumanMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatResult
|
|
from langchain_core.pydantic_v1 import root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
else:
|
|
raise ValueError(f"Got unknown type {message}")
|
|
return message_dict
|
|
|
|
|
|
class ErnieBotChat(BaseChatModel):
|
|
"""`ERNIE-Bot` large language model.
|
|
|
|
ERNIE-Bot is a large language model developed by Baidu,
|
|
covering a huge amount of Chinese data.
|
|
|
|
To use, you should have the `ernie_client_id` and `ernie_client_secret` set,
|
|
or set the environment variable `ERNIE_CLIENT_ID` and `ERNIE_CLIENT_SECRET`.
|
|
|
|
Note:
|
|
access_token will be automatically generated based on client_id and client_secret,
|
|
and will be regenerated after expiration (30 days).
|
|
|
|
Default model is `ERNIE-Bot-turbo`,
|
|
currently supported models are `ERNIE-Bot-turbo`, `ERNIE-Bot`, `ERNIE-Bot-8K`,
|
|
`ERNIE-Bot-4`, `ERNIE-Bot-turbo-AI`.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ErnieBotChat
|
|
chat = ErnieBotChat(model_name='ERNIE-Bot')
|
|
|
|
|
|
Deprecated Note:
|
|
Please use `QianfanChatEndpoint` instead of this class.
|
|
`QianfanChatEndpoint` is a more suitable choice for production.
|
|
|
|
Always test your code after changing to `QianfanChatEndpoint`.
|
|
|
|
Example of `QianfanChatEndpoint`:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import QianfanChatEndpoint
|
|
qianfan_chat = QianfanChatEndpoint(model="ERNIE-Bot",
|
|
endpoint="your_endpoint", qianfan_ak="your_ak", qianfan_sk="your_sk")
|
|
|
|
"""
|
|
|
|
ernie_api_base: Optional[str] = None
|
|
"""Baidu application custom endpoints"""
|
|
|
|
ernie_client_id: Optional[str] = None
|
|
"""Baidu application client id"""
|
|
|
|
ernie_client_secret: Optional[str] = None
|
|
"""Baidu application client secret"""
|
|
|
|
access_token: Optional[str] = None
|
|
"""access token is generated by client id and client secret,
|
|
setting this value directly will cause an error"""
|
|
|
|
model_name: str = "ERNIE-Bot-turbo"
|
|
"""model name of ernie, default is `ERNIE-Bot-turbo`.
|
|
Currently supported `ERNIE-Bot-turbo`, `ERNIE-Bot`"""
|
|
|
|
system: Optional[str] = None
|
|
"""system is mainly used for model character design,
|
|
for example, you are an AI assistant produced by xxx company.
|
|
The length of the system is limiting of 1024 characters."""
|
|
|
|
request_timeout: Optional[int] = 60
|
|
"""request timeout for chat http requests"""
|
|
|
|
streaming: Optional[bool] = False
|
|
"""streaming mode. not supported yet."""
|
|
|
|
top_p: Optional[float] = 0.8
|
|
temperature: Optional[float] = 0.95
|
|
penalty_score: Optional[float] = 1
|
|
|
|
_lock = threading.Lock()
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
values["ernie_api_base"] = get_from_dict_or_env(
|
|
values, "ernie_api_base", "ERNIE_API_BASE", "https://aip.baidubce.com"
|
|
)
|
|
values["ernie_client_id"] = get_from_dict_or_env(
|
|
values,
|
|
"ernie_client_id",
|
|
"ERNIE_CLIENT_ID",
|
|
)
|
|
values["ernie_client_secret"] = get_from_dict_or_env(
|
|
values,
|
|
"ernie_client_secret",
|
|
"ERNIE_CLIENT_SECRET",
|
|
)
|
|
return values
|
|
|
|
def _chat(self, payload: object) -> dict:
|
|
base_url = f"{self.ernie_api_base}/rpc/2.0/ai_custom/v1/wenxinworkshop/chat"
|
|
model_paths = {
|
|
"ERNIE-Bot-turbo": "eb-instant",
|
|
"ERNIE-Bot": "completions",
|
|
"ERNIE-Bot-8K": "ernie_bot_8k",
|
|
"ERNIE-Bot-4": "completions_pro",
|
|
"ERNIE-Bot-turbo-AI": "ai_apaas",
|
|
"BLOOMZ-7B": "bloomz_7b1",
|
|
"Llama-2-7b-chat": "llama_2_7b",
|
|
"Llama-2-13b-chat": "llama_2_13b",
|
|
"Llama-2-70b-chat": "llama_2_70b",
|
|
}
|
|
if self.model_name in model_paths:
|
|
url = f"{base_url}/{model_paths[self.model_name]}"
|
|
else:
|
|
raise ValueError(f"Got unknown model_name {self.model_name}")
|
|
|
|
resp = requests.post(
|
|
url,
|
|
timeout=self.request_timeout,
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
},
|
|
params={"access_token": self.access_token},
|
|
json=payload,
|
|
)
|
|
return resp.json()
|
|
|
|
def _refresh_access_token_with_lock(self) -> None:
|
|
with self._lock:
|
|
logger.debug("Refreshing access token")
|
|
base_url: str = f"{self.ernie_api_base}/oauth/2.0/token"
|
|
resp = requests.post(
|
|
base_url,
|
|
timeout=10,
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
"Accept": "application/json",
|
|
},
|
|
params={
|
|
"grant_type": "client_credentials",
|
|
"client_id": self.ernie_client_id,
|
|
"client_secret": self.ernie_client_secret,
|
|
},
|
|
)
|
|
self.access_token = str(resp.json().get("access_token"))
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
raise ValueError("`streaming` option currently unsupported.")
|
|
|
|
if not self.access_token:
|
|
self._refresh_access_token_with_lock()
|
|
payload = {
|
|
"messages": [_convert_message_to_dict(m) for m in messages],
|
|
"top_p": self.top_p,
|
|
"temperature": self.temperature,
|
|
"penalty_score": self.penalty_score,
|
|
"system": self.system,
|
|
**kwargs,
|
|
}
|
|
logger.debug(f"Payload for ernie api is {payload}")
|
|
resp = self._chat(payload)
|
|
if resp.get("error_code"):
|
|
if resp.get("error_code") == 111:
|
|
logger.debug("access_token expired, refresh it")
|
|
self._refresh_access_token_with_lock()
|
|
resp = self._chat(payload)
|
|
else:
|
|
raise ValueError(f"Error from ErnieChat api response: {resp}")
|
|
return self._create_chat_result(resp)
|
|
|
|
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
|
if "function_call" in response:
|
|
additional_kwargs = {
|
|
"function_call": dict(response.get("function_call", {}))
|
|
}
|
|
else:
|
|
additional_kwargs = {}
|
|
generations = [
|
|
ChatGeneration(
|
|
message=AIMessage(
|
|
content=response.get("result"),
|
|
additional_kwargs={**additional_kwargs},
|
|
)
|
|
)
|
|
]
|
|
token_usage = response.get("usage", {})
|
|
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "ernie-bot-chat"
|