mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
132 lines
4.2 KiB
Python
132 lines
4.2 KiB
Python
from typing import Any, Dict, Iterator, List, Optional
|
|
|
|
from langchain_core.callbacks import (
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import Extra
|
|
|
|
from langchain_community.chat_models.anthropic import (
|
|
convert_messages_to_prompt_anthropic,
|
|
)
|
|
from langchain_community.chat_models.meta import convert_messages_to_prompt_llama
|
|
from langchain_community.llms.bedrock import BedrockBase
|
|
from langchain_community.utilities.anthropic import (
|
|
get_num_tokens_anthropic,
|
|
get_token_ids_anthropic,
|
|
)
|
|
|
|
|
|
class ChatPromptAdapter:
|
|
"""Adapter class to prepare the inputs from Langchain to prompt format
|
|
that Chat model expects.
|
|
"""
|
|
|
|
@classmethod
|
|
def convert_messages_to_prompt(
|
|
cls, provider: str, messages: List[BaseMessage]
|
|
) -> str:
|
|
if provider == "anthropic":
|
|
prompt = convert_messages_to_prompt_anthropic(messages=messages)
|
|
elif provider == "meta":
|
|
prompt = convert_messages_to_prompt_llama(messages=messages)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Provider {provider} model does not support chat."
|
|
)
|
|
return prompt
|
|
|
|
|
|
class BedrockChat(BaseChatModel, BedrockBase):
|
|
"""A chat model that uses the Bedrock API."""
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "amazon_bedrock_chat"
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
"""Return whether this model can be serialized by Langchain."""
|
|
return True
|
|
|
|
@classmethod
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
"""Get the namespace of the langchain object."""
|
|
return ["langchain", "chat_models", "bedrock"]
|
|
|
|
@property
|
|
def lc_attributes(self) -> Dict[str, Any]:
|
|
attributes: Dict[str, Any] = {}
|
|
|
|
if self.region_name:
|
|
attributes["region_name"] = self.region_name
|
|
|
|
return attributes
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
provider = self._get_provider()
|
|
prompt = ChatPromptAdapter.convert_messages_to_prompt(
|
|
provider=provider, messages=messages
|
|
)
|
|
|
|
for chunk in self._prepare_input_and_invoke_stream(
|
|
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
|
|
):
|
|
delta = chunk.text
|
|
yield ChatGenerationChunk(message=AIMessageChunk(content=delta))
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
completion = ""
|
|
|
|
if self.streaming:
|
|
for chunk in self._stream(messages, stop, run_manager, **kwargs):
|
|
completion += chunk.text
|
|
else:
|
|
provider = self._get_provider()
|
|
prompt = ChatPromptAdapter.convert_messages_to_prompt(
|
|
provider=provider, messages=messages
|
|
)
|
|
|
|
params: Dict[str, Any] = {**kwargs}
|
|
if stop:
|
|
params["stop_sequences"] = stop
|
|
|
|
completion = self._prepare_input_and_invoke(
|
|
prompt=prompt, stop=stop, run_manager=run_manager, **params
|
|
)
|
|
|
|
message = AIMessage(content=completion)
|
|
return ChatResult(generations=[ChatGeneration(message=message)])
|
|
|
|
def get_num_tokens(self, text: str) -> int:
|
|
if self._model_is_anthropic:
|
|
return get_num_tokens_anthropic(text)
|
|
else:
|
|
return super().get_num_tokens(text)
|
|
|
|
def get_token_ids(self, text: str) -> List[int]:
|
|
if self._model_is_anthropic:
|
|
return get_token_ids_anthropic(text)
|
|
else:
|
|
return super().get_token_ids(text)
|