langchain/docs/extras/modules/data_connection/text_embedding/integrations/deepinfra.ipynb
Davis Chase 87e502c6bc
Doc refactor (#6300)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-06-16 11:52:56 -07:00

135 lines
3.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# DeepInfra\n",
"\n",
"[DeepInfra](https://deepinfra.com/?utm_source=langchain) is a serverless inference as a service that provides access to a [variety of LLMs](https://deepinfra.com/models?utm_source=langchain) and [embeddings models](https://deepinfra.com/models?type=embeddings&utm_source=langchain). This notebook goes over how to use LangChain with DeepInfra for text embeddings."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" ········\n"
]
}
],
"source": [
"# sign up for an account: https://deepinfra.com/login?utm_source=langchain\n",
"\n",
"from getpass import getpass\n",
"\n",
"DEEPINFRA_API_TOKEN = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"DEEPINFRA_API_TOKEN\"] = DEEPINFRA_API_TOKEN"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import DeepInfraEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"embeddings = DeepInfraEmbeddings(\n",
" model_id=\"sentence-transformers/clip-ViT-B-32\",\n",
" query_instruction=\"\",\n",
" embed_instruction=\"\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"docs = [\"Dog is not a cat\", \"Beta is the second letter of Greek alphabet\"]\n",
"document_result = embeddings.embed_documents(docs)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"query = \"What is the first letter of Greek alphabet\"\n",
"query_result = embeddings.embed_query(query)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cosine similarity between \"Dog is not a cat\" and query: 0.7489097144129355\n",
"Cosine similarity between \"Beta is the second letter of Greek alphabet\" and query: 0.9519380640702013\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"query_numpy = np.array(query_result)\n",
"for doc_res, doc in zip(document_result, docs):\n",
" document_numpy = np.array(doc_res)\n",
" similarity = np.dot(query_numpy, document_numpy) / (\n",
" np.linalg.norm(query_numpy) * np.linalg.norm(document_numpy)\n",
" )\n",
" print(f'Cosine similarity between \"{doc}\" and query: {similarity}')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}