langchain/libs/experimental/langchain_experimental/data_anonymizer/presidio.py
maks-operlejn-ds 274c3dc3a8
Multilingual anonymization (#10327)
### Description

Add multiple language support to Anonymizer

PII detection in Microsoft Presidio relies on several components - in
addition to the usual pattern matching (e.g. using regex), the analyser
uses a model for Named Entity Recognition (NER) to extract entities such
as:
- `PERSON`
- `LOCATION`
- `DATE_TIME`
- `NRP`
- `ORGANIZATION`


[[Source]](https://github.com/microsoft/presidio/blob/main/presidio-analyzer/presidio_analyzer/predefined_recognizers/spacy_recognizer.py)

To handle NER in specific languages, we utilize unique models from the
`spaCy` library, recognized for its extensive selection covering
multiple languages and sizes. However, it's not restrictive, allowing
for integration of alternative frameworks such as
[Stanza](https://microsoft.github.io/presidio/analyzer/nlp_engines/spacy_stanza/)
or
[transformers](https://microsoft.github.io/presidio/analyzer/nlp_engines/transformers/)
when necessary.

### Future works

- **automatic language detection** - instead of passing the language as
a parameter in `anonymizer.anonymize`, we could detect the language/s
beforehand and then use the corresponding NER model. We have discussed
this internally and @mateusz-wosinski-ds will look into a standalone
language detection tool/chain for LangChain 😄

### Twitter handle
@deepsense_ai / @MaksOpp

### Tag maintainer
@baskaryan @hwchase17 @hinthornw
2023-09-07 14:42:24 -07:00

367 lines
13 KiB
Python

from __future__ import annotations
import json
from collections import defaultdict
from pathlib import Path
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Union
import yaml
from langchain_experimental.data_anonymizer.base import (
AnonymizerBase,
ReversibleAnonymizerBase,
)
from langchain_experimental.data_anonymizer.deanonymizer_mapping import (
DeanonymizerMapping,
MappingDataType,
)
from langchain_experimental.data_anonymizer.deanonymizer_matching_strategies import (
default_matching_strategy,
)
from langchain_experimental.data_anonymizer.faker_presidio_mapping import (
get_pseudoanonymizer_mapping,
)
try:
from presidio_analyzer import AnalyzerEngine
from presidio_analyzer.nlp_engine import NlpEngineProvider
except ImportError as e:
raise ImportError(
"Could not import presidio_analyzer, please install with "
"`pip install presidio-analyzer`. You will also need to download a "
"spaCy model to use the analyzer, e.g. "
"`python -m spacy download en_core_web_lg`."
) from e
try:
from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
except ImportError as e:
raise ImportError(
"Could not import presidio_anonymizer, please install with "
"`pip install presidio-anonymizer`."
) from e
if TYPE_CHECKING:
from presidio_analyzer import EntityRecognizer, RecognizerResult
from presidio_anonymizer.entities import EngineResult
# Configuring Anonymizer for multiple languages
# Detailed description and examples can be found here:
# langchain/docs/extras/guides/privacy/multi_language_anonymization.ipynb
DEFAULT_LANGUAGES_CONFIG = {
# You can also use Stanza or transformers library.
# See https://microsoft.github.io/presidio/analyzer/customizing_nlp_models/
"nlp_engine_name": "spacy",
"models": [
{"lang_code": "en", "model_name": "en_core_web_lg"},
# {"lang_code": "de", "model_name": "de_core_news_md"},
# {"lang_code": "es", "model_name": "es_core_news_md"},
# ...
# List of available models: https://spacy.io/usage/models
],
}
class PresidioAnonymizerBase(AnonymizerBase):
def __init__(
self,
analyzed_fields: Optional[List[str]] = None,
operators: Optional[Dict[str, OperatorConfig]] = None,
languages_config: Dict = DEFAULT_LANGUAGES_CONFIG,
faker_seed: Optional[int] = None,
):
"""
Args:
analyzed_fields: List of fields to detect and then anonymize.
Defaults to all entities supported by Microsoft Presidio.
operators: Operators to use for anonymization.
Operators allow for custom anonymization of detected PII.
Learn more:
https://microsoft.github.io/presidio/tutorial/10_simple_anonymization/
languages_config: Configuration for the NLP engine.
First language in the list will be used as the main language
in self.anonymize(...) when no language is specified.
Learn more:
https://microsoft.github.io/presidio/analyzer/customizing_nlp_models/
faker_seed: Seed used to initialize faker.
Defaults to None, in which case faker will be seeded randomly
and provide random values.
"""
self.analyzed_fields = (
analyzed_fields
if analyzed_fields is not None
else list(get_pseudoanonymizer_mapping().keys())
)
self.operators = (
operators
if operators is not None
else {
field: OperatorConfig(
operator_name="custom", params={"lambda": faker_function}
)
for field, faker_function in get_pseudoanonymizer_mapping(
faker_seed
).items()
}
)
provider = NlpEngineProvider(nlp_configuration=languages_config)
nlp_engine = provider.create_engine()
self.supported_languages = list(nlp_engine.nlp.keys())
self._analyzer = AnalyzerEngine(
supported_languages=self.supported_languages, nlp_engine=nlp_engine
)
self._anonymizer = AnonymizerEngine()
def add_recognizer(self, recognizer: EntityRecognizer) -> None:
"""Add a recognizer to the analyzer
Args:
recognizer: Recognizer to add to the analyzer.
"""
self._analyzer.registry.add_recognizer(recognizer)
self.analyzed_fields.extend(recognizer.supported_entities)
def add_operators(self, operators: Dict[str, OperatorConfig]) -> None:
"""Add operators to the anonymizer
Args:
operators: Operators to add to the anonymizer.
"""
self.operators.update(operators)
class PresidioAnonymizer(PresidioAnonymizerBase):
def _anonymize(self, text: str, language: Optional[str] = None) -> str:
"""Anonymize text.
Each PII entity is replaced with a fake value.
Each time fake values will be different, as they are generated randomly.
Args:
text: text to anonymize
language: language to use for analysis of PII
If None, the first (main) language in the list
of languages specified in the configuration will be used.
"""
if language is None:
language = self.supported_languages[0]
if language not in self.supported_languages:
raise ValueError(
f"Language '{language}' is not supported. "
f"Supported languages are: {self.supported_languages}. "
"Change your language configuration file to add more languages."
)
results = self._analyzer.analyze(
text,
entities=self.analyzed_fields,
language=language,
)
return self._anonymizer.anonymize(
text,
analyzer_results=results,
operators=self.operators,
).text
class PresidioReversibleAnonymizer(PresidioAnonymizerBase, ReversibleAnonymizerBase):
def __init__(
self,
analyzed_fields: Optional[List[str]] = None,
operators: Optional[Dict[str, OperatorConfig]] = None,
languages_config: Dict = DEFAULT_LANGUAGES_CONFIG,
faker_seed: Optional[int] = None,
):
super().__init__(analyzed_fields, operators, languages_config, faker_seed)
self._deanonymizer_mapping = DeanonymizerMapping()
@property
def deanonymizer_mapping(self) -> MappingDataType:
"""Return the deanonymizer mapping"""
return self._deanonymizer_mapping.data
def _update_deanonymizer_mapping(
self,
original_text: str,
analyzer_results: List[RecognizerResult],
anonymizer_results: EngineResult,
) -> None:
"""Creates or updates the mapping used to de-anonymize text.
This method exploits the results returned by the
analysis and anonymization processes.
It constructs a mapping from each anonymized entity
back to its original text value.
Mapping will be stored as "deanonymizer_mapping" property.
Example of "deanonymizer_mapping":
{
"PERSON": {
"<anonymized>": "<original>",
"John Doe": "Slim Shady"
},
"PHONE_NUMBER": {
"111-111-1111": "555-555-5555"
}
...
}
"""
# We are able to zip and loop through both lists because we expect
# them to return corresponding entities for each identified piece
# of analyzable data from our input.
# We sort them by their 'start' attribute because it allows us to
# match corresponding entities by their position in the input text.
analyzer_results = sorted(analyzer_results, key=lambda d: d.start)
anonymizer_results.items = sorted(
anonymizer_results.items, key=lambda d: d.start
)
new_deanonymizer_mapping: MappingDataType = defaultdict(dict)
for analyzed_entity, anonymized_entity in zip(
analyzer_results, anonymizer_results.items
):
original_value = original_text[analyzed_entity.start : analyzed_entity.end]
new_deanonymizer_mapping[anonymized_entity.entity_type][
anonymized_entity.text
] = original_value
self._deanonymizer_mapping.update(new_deanonymizer_mapping)
def _anonymize(self, text: str, language: Optional[str] = None) -> str:
"""Anonymize text.
Each PII entity is replaced with a fake value.
Each time fake values will be different, as they are generated randomly.
At the same time, we will create a mapping from each anonymized entity
back to its original text value.
Args:
text: text to anonymize
language: language to use for analysis of PII
If None, the first (main) language in the list
of languages specified in the configuration will be used.
"""
if language is None:
language = self.supported_languages[0]
if language not in self.supported_languages:
raise ValueError(
f"Language '{language}' is not supported. "
f"Supported languages are: {self.supported_languages}. "
"Change your language configuration file to add more languages."
)
analyzer_results = self._analyzer.analyze(
text,
entities=self.analyzed_fields,
language=language,
)
filtered_analyzer_results = (
self._anonymizer._remove_conflicts_and_get_text_manipulation_data(
analyzer_results
)
)
anonymizer_results = self._anonymizer.anonymize(
text,
analyzer_results=analyzer_results,
operators=self.operators,
)
self._update_deanonymizer_mapping(
text, filtered_analyzer_results, anonymizer_results
)
return anonymizer_results.text
def _deanonymize(
self,
text_to_deanonymize: str,
deanonymizer_matching_strategy: Callable[
[str, MappingDataType], str
] = default_matching_strategy,
) -> str:
"""Deanonymize text.
Each anonymized entity is replaced with its original value.
This method exploits the mapping created during the anonymization process.
Args:
text_to_deanonymize: text to deanonymize
deanonymizer_matching_strategy: function to use to match
anonymized entities with their original values and replace them.
"""
if not self._deanonymizer_mapping:
raise ValueError(
"Deanonymizer mapping is empty.",
"Please call anonymize() and anonymize some text first.",
)
text_to_deanonymize = deanonymizer_matching_strategy(
text_to_deanonymize, self.deanonymizer_mapping
)
return text_to_deanonymize
def save_deanonymizer_mapping(self, file_path: Union[Path, str]) -> None:
"""Save the deanonymizer mapping to a JSON or YAML file.
Args:
file_path: Path to file to save the mapping to.
Example:
.. code-block:: python
anonymizer.save_deanonymizer_mapping(file_path="path/mapping.json")
"""
save_path = Path(file_path)
if save_path.suffix not in [".json", ".yaml"]:
raise ValueError(f"{save_path} must have an extension of .json or .yaml")
# Make sure parent directories exist
save_path.parent.mkdir(parents=True, exist_ok=True)
if save_path.suffix == ".json":
with open(save_path, "w") as f:
json.dump(self.deanonymizer_mapping, f, indent=2)
elif save_path.suffix == ".yaml":
with open(save_path, "w") as f:
yaml.dump(self.deanonymizer_mapping, f, default_flow_style=False)
def load_deanonymizer_mapping(self, file_path: Union[Path, str]) -> None:
"""Load the deanonymizer mapping from a JSON or YAML file.
Args:
file_path: Path to file to load the mapping from.
Example:
.. code-block:: python
anonymizer.load_deanonymizer_mapping(file_path="path/mapping.json")
"""
load_path = Path(file_path)
if load_path.suffix not in [".json", ".yaml"]:
raise ValueError(f"{load_path} must have an extension of .json or .yaml")
if load_path.suffix == ".json":
with open(load_path, "r") as f:
loaded_mapping = json.load(f)
elif load_path.suffix == ".yaml":
with open(load_path, "r") as f:
loaded_mapping = yaml.load(f, Loader=yaml.FullLoader)
self._deanonymizer_mapping.update(loaded_mapping)