mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
183 lines
4.5 KiB
Plaintext
183 lines
4.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e71e720f",
|
|
"metadata": {},
|
|
"source": [
|
|
"# LLM Math\n",
|
|
"\n",
|
|
"This notebook showcases using LLMs and Python REPLs to do complex word math problems."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "44e9ba31",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
|
|
"What is 13 raised to the .3432 power?\u001b[32;1m\u001b[1;3m\n",
|
|
"```python\n",
|
|
"import math\n",
|
|
"print(math.pow(13, .3432))\n",
|
|
"```\n",
|
|
"\u001b[0m\n",
|
|
"Answer: \u001b[33;1m\u001b[1;3m2.4116004626599237\n",
|
|
"\u001b[0m\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Answer: 2.4116004626599237\\n'"
|
|
]
|
|
},
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain import OpenAI, LLMMathChain\n",
|
|
"\n",
|
|
"llm = OpenAI(temperature=0)\n",
|
|
"llm_math = LLMMathChain(llm=llm, verbose=True)\n",
|
|
"\n",
|
|
"llm_math.run(\"What is 13 raised to the .3432 power?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2bdd5fc6",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Customize Prompt\n",
|
|
"You can also customize the prompt that is used. Here is an example prompting it to use numpy"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 24,
|
|
"id": "76be17b0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.prompts.prompt import PromptTemplate\n",
|
|
"\n",
|
|
"_PROMPT_TEMPLATE = \"\"\"You are GPT-3, and you can't do math.\n",
|
|
"\n",
|
|
"You can do basic math, and your memorization abilities are impressive, but you can't do any complex calculations that a human could not do in their head. You also have an annoying tendency to just make up highly specific, but wrong, answers.\n",
|
|
"\n",
|
|
"So we hooked you up to a Python 3 kernel, and now you can execute code. If you execute code, you must print out the final answer using the print function. You MUST use the python package numpy to answer your question. You must import numpy as np.\n",
|
|
"\n",
|
|
"\n",
|
|
"Question: ${{Question with hard calculation.}}\n",
|
|
"```python\n",
|
|
"${{Code that prints what you need to know}}\n",
|
|
"print(${{code}})\n",
|
|
"```\n",
|
|
"```output\n",
|
|
"${{Output of your code}}\n",
|
|
"```\n",
|
|
"Answer: ${{Answer}}\n",
|
|
"\n",
|
|
"Begin.\n",
|
|
"\n",
|
|
"Question: What is 37593 * 67?\n",
|
|
"\n",
|
|
"```python\n",
|
|
"import numpy as np\n",
|
|
"print(np.multiply(37593, 67))\n",
|
|
"```\n",
|
|
"```output\n",
|
|
"2518731\n",
|
|
"```\n",
|
|
"Answer: 2518731\n",
|
|
"\n",
|
|
"Question: {question}\"\"\"\n",
|
|
"\n",
|
|
"PROMPT = PromptTemplate(input_variables=[\"question\"], template=_PROMPT_TEMPLATE)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 25,
|
|
"id": "0c42faa0",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
|
|
"What is 13 raised to the .3432 power?\u001b[32;1m\u001b[1;3m\n",
|
|
"\n",
|
|
"```python\n",
|
|
"import numpy as np\n",
|
|
"print(np.power(13, .3432))\n",
|
|
"```\n",
|
|
"\u001b[0m\n",
|
|
"Answer: \u001b[33;1m\u001b[1;3m2.4116004626599237\n",
|
|
"\u001b[0m\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Answer: 2.4116004626599237\\n'"
|
|
]
|
|
},
|
|
"execution_count": 25,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm_math = LLMMathChain(llm=llm, prompt=PROMPT, verbose=True)\n",
|
|
"\n",
|
|
"llm_math.run(\"What is 13 raised to the .3432 power?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "0c62951b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.9"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|