langchain/docs/extras/integrations/llms/minimax.ipynb
2023-09-16 17:22:48 -07:00

177 lines
3.7 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Minimax\n",
"\n",
"[Minimax](https://api.minimax.chat) is a Chinese startup that provides natural language processing models for companies and individuals.\n",
"\n",
"This example demonstrates using Langchain to interact with Minimax."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup\n",
"\n",
"To run this notebook, you'll need a [Minimax account](https://api.minimax.chat), an [API key](https://api.minimax.chat/user-center/basic-information/interface-key), and a [Group ID](https://api.minimax.chat/user-center/basic-information)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Single model call"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import Minimax"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"# Load the model\n",
"minimax = Minimax(minimax_api_key=\"YOUR_API_KEY\", minimax_group_id=\"YOUR_GROUP_ID\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true
}
},
"outputs": [],
"source": [
"# Prompt the model\n",
"minimax(\"What is the difference between panda and bear?\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chained model calls"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"# get api_key and group_id: https://api.minimax.chat/user-center/basic-information\n",
"# We need `MINIMAX_API_KEY` and `MINIMAX_GROUP_ID`\n",
"\n",
"import os\n",
"\n",
"os.environ[\"MINIMAX_API_KEY\"] = \"YOUR_API_KEY\"\n",
"os.environ[\"MINIMAX_GROUP_ID\"] = \"YOUR_GROUP_ID\""
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"from langchain.llms import Minimax\n",
"from langchain.prompts import PromptTemplate\nfrom langchain.chains import LLMChain"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"llm = Minimax()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"question = \"What NBA team won the Championship in the year Jay Zhou was born?\"\n",
"\n",
"llm_chain.run(question)"
],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}