mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
1e21a3f7ed
Add support for Gemini embeddings in the langchain-google-genai package |
||
---|---|---|
.. | ||
langchain_google_genai | ||
scripts | ||
tests | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
pyproject.toml | ||
README.md |
langchain-google-genai
This package contains the LangChain integrations for Gemini through their generative-ai SDK.
Installation
pip install -U langchain-google-genai
Chat Models
This package contains the ChatGoogleGenerativeAI
class, which is the recommended way to interface with the Google Gemini series of models.
To use, install the requirements, and configure your environment.
export GOOGLE_API_KEY=your-api-key
Then initialize
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")
Multimodal inputs
Gemini vision model supports image inputs when providing a single chat message. Example:
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
# example
message = HumanMessage(
content=[
{
"type": "text",
"text": "What's in this image?",
}, # You can optionally provide text parts
{"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
]
)
llm.invoke([message])
The value of image_url
can be any of the following:
- A public image URL
- An accessible gcs file (e.g., "gcs://path/to/file.png")
- A local file path
- A base64 encoded image (e.g.,

) - A PIL image
Embeddings
This package also adds support for google's embeddings models.
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("hello, world!")