mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
126d7f11dd
The following calls were throwing an exception:575b717d10/docs/use_cases/evaluation/agent_vectordb_sota_pg.ipynb (L192)
575b717d10/docs/use_cases/evaluation/agent_vectordb_sota_pg.ipynb (L239)
Exception: ``` --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) Cell In[14], line 1 ----> 1 chain_sota = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), chain_type="stuff", retriever=vectorstore_sota, input_key="question") File ~/github/langchain/venv/lib/python3.9/site-packages/langchain/chains/retrieval_qa/base.py:89, in BaseRetrievalQA.from_chain_type(cls, llm, chain_type, chain_type_kwargs, **kwargs) 85 _chain_type_kwargs = chain_type_kwargs or {} 86 combine_documents_chain = load_qa_chain( 87 llm, chain_type=chain_type, **_chain_type_kwargs 88 ) ---> 89 return cls(combine_documents_chain=combine_documents_chain, **kwargs) File ~/github/langchain/venv/lib/python3.9/site-packages/pydantic/main.py:341, in pydantic.main.BaseModel.__init__() ValidationError: 1 validation error for RetrievalQA retriever instance of BaseRetriever expected (type=type_error.arbitrary_type; expected_arbitrary_type=BaseRetriever) ``` The vectorstores had to be converted to retrievers: `vectorstore_sota.as_retriever()` and `vectorstore_pg.as_retriever()`. The PR also: - adds the file `paul_graham_essay.txt` referenced by this notebook - adds to gitignore *.pkl and *.bin files that are generated by this notebook Interestingly enough, the performance of the prediction greatly increased (new version of langchain or ne version of OpenAI models since the last run of the notebook): from 19/33 correct to 28/33 correct!
495 lines
13 KiB
Plaintext
495 lines
13 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "984169ca",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Agent VectorDB Question Answering Benchmarking\n",
|
||
"\n",
|
||
"Here we go over how to benchmark performance on a question answering task using an agent to route between multiple vectordatabases.\n",
|
||
"\n",
|
||
"It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See [here](https://langchain.readthedocs.io/en/latest/tracing.html) for an explanation of what tracing is and how to set it up."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "7b57a50f",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Comment this out if you are NOT using tracing\n",
|
||
"import os\n",
|
||
"os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8a16b75d",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Loading the data\n",
|
||
"First, let's load the data."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "5b2d5e98",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Found cached dataset json (/Users/qt/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--agent-vectordb-qa-sota-pg-d3ae24016b514f92/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e233e6e)\n",
|
||
"100%|██████████| 1/1 [00:00<00:00, 414.42it/s]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from langchain.evaluation.loading import load_dataset\n",
|
||
"dataset = load_dataset(\"agent-vectordb-qa-sota-pg\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "61375342",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'question': 'What is the purpose of the NATO Alliance?',\n",
|
||
" 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.',\n",
|
||
" 'steps': [{'tool': 'State of Union QA System', 'tool_input': None},\n",
|
||
" {'tool': None, 'tool_input': 'What is the purpose of the NATO Alliance?'}]}"
|
||
]
|
||
},
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"dataset[0]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "02500304",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'question': 'What is the purpose of YC?',\n",
|
||
" 'answer': 'The purpose of YC is to cause startups to be founded that would not otherwise have existed.',\n",
|
||
" 'steps': [{'tool': 'Paul Graham QA System', 'tool_input': None},\n",
|
||
" {'tool': None, 'tool_input': 'What is the purpose of YC?'}]}"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"dataset[-1]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "4ab6a716",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Setting up a chain\n",
|
||
"Now we need to create some pipelines for doing question answering. Step one in that is creating indexes over the data in question."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "c18680b5",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from langchain.document_loaders import TextLoader\n",
|
||
"loader = TextLoader(\"../../modules/state_of_the_union.txt\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "7f0de2b3",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from langchain.indexes import VectorstoreIndexCreator"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "ef84ff99",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Using embedded DuckDB without persistence: data will be transient\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"vectorstore_sota = VectorstoreIndexCreator(vectorstore_kwargs={\"collection_name\":\"sota\"}).from_loaders([loader]).vectorstore"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f0b5d8f6",
|
||
"metadata": {},
|
||
"source": [
|
||
"Now we can create a question answering chain."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"id": "8843cb0c",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from langchain.chains import RetrievalQA\n",
|
||
"from langchain.llms import OpenAI"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"id": "573719a0",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"chain_sota = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), chain_type=\"stuff\", retriever=vectorstore_sota.as_retriever(), input_key=\"question\")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "e48b03d8",
|
||
"metadata": {},
|
||
"source": [
|
||
"Now we do the same for the Paul Graham data."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"id": "c2dbb014",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"loader = TextLoader(\"../../modules/paul_graham_essay.txt\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"id": "98d16f08",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Using embedded DuckDB without persistence: data will be transient\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"vectorstore_pg = VectorstoreIndexCreator(vectorstore_kwargs={\"collection_name\":\"paul_graham\"}).from_loaders([loader]).vectorstore"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"id": "ec0aab02",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"chain_pg = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), chain_type=\"stuff\", retriever=vectorstore_pg.as_retriever(), input_key=\"question\")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "76b5f8fb",
|
||
"metadata": {},
|
||
"source": [
|
||
"We can now set up an agent to route between them."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"id": "ade1aafa",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from langchain.agents import initialize_agent, Tool\n",
|
||
"from langchain.agents import AgentType\n",
|
||
"tools = [\n",
|
||
" Tool(\n",
|
||
" name = \"State of Union QA System\",\n",
|
||
" func=chain_sota.run,\n",
|
||
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.\"\n",
|
||
" ),\n",
|
||
" Tool(\n",
|
||
" name = \"Paul Graham System\",\n",
|
||
" func=chain_pg.run,\n",
|
||
" description=\"useful for when you need to answer questions about Paul Graham. Input should be a fully formed question.\"\n",
|
||
" ),\n",
|
||
"]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"id": "104853f8",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"agent = initialize_agent(tools, OpenAI(temperature=0), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, max_iterations=4)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "7f036641",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Make a prediction\n",
|
||
"\n",
|
||
"First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 35,
|
||
"id": "4664e79f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.'"
|
||
]
|
||
},
|
||
"execution_count": 35,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"agent.run(dataset[0]['question'])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d0c16cd7",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Make many predictions\n",
|
||
"Now we can make predictions"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 36,
|
||
"id": "799f6c17",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"predictions = []\n",
|
||
"predicted_dataset = []\n",
|
||
"error_dataset = []\n",
|
||
"for data in dataset:\n",
|
||
" new_data = {\"input\": data[\"question\"], \"answer\": data[\"answer\"]}\n",
|
||
" try:\n",
|
||
" predictions.append(agent(new_data))\n",
|
||
" predicted_dataset.append(new_data)\n",
|
||
" except Exception:\n",
|
||
" error_dataset.append(new_data)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "49d969fb",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Evaluate performance\n",
|
||
"Now we can evaluate the predictions. The first thing we can do is look at them by eye."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 37,
|
||
"id": "1d583f03",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'input': 'What is the purpose of the NATO Alliance?',\n",
|
||
" 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.',\n",
|
||
" 'output': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.'}"
|
||
]
|
||
},
|
||
"execution_count": 37,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"predictions[0]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "4783344b",
|
||
"metadata": {},
|
||
"source": [
|
||
"Next, we can use a language model to score them programatically"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 38,
|
||
"id": "d0a9341d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from langchain.evaluation.qa import QAEvalChain"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 39,
|
||
"id": "1612dec1",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"llm = OpenAI(temperature=0)\n",
|
||
"eval_chain = QAEvalChain.from_llm(llm)\n",
|
||
"graded_outputs = eval_chain.evaluate(predicted_dataset, predictions, question_key=\"input\", prediction_key=\"output\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "79587806",
|
||
"metadata": {},
|
||
"source": [
|
||
"We can add in the graded output to the `predictions` dict and then get a count of the grades."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 40,
|
||
"id": "2a689df5",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"for i, prediction in enumerate(predictions):\n",
|
||
" prediction['grade'] = graded_outputs[i]['text']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 41,
|
||
"id": "27b61215",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Counter({' CORRECT': 28, ' INCORRECT': 5})"
|
||
]
|
||
},
|
||
"execution_count": 41,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"from collections import Counter\n",
|
||
"Counter([pred['grade'] for pred in predictions])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "12fe30f4",
|
||
"metadata": {},
|
||
"source": [
|
||
"We can also filter the datapoints to the incorrect examples and look at them."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 42,
|
||
"id": "47c692a1",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"incorrect = [pred for pred in predictions if pred['grade'] == \" INCORRECT\"]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 43,
|
||
"id": "0ef976c1",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'input': 'What are the four common sense steps that the author suggests to move forward safely?',\n",
|
||
" 'answer': 'The four common sense steps suggested by the author to move forward safely are: stay protected with vaccines and treatments, prepare for new variants, end the shutdown of schools and businesses, and stay vigilant.',\n",
|
||
" 'output': 'The four common sense steps suggested in the most recent State of the Union address are: cutting the cost of prescription drugs, providing a pathway to citizenship for Dreamers, revising laws so businesses have the workers they need and families don’t wait decades to reunite, and protecting access to health care and preserving a woman’s right to choose.',\n",
|
||
" 'grade': ' INCORRECT'}"
|
||
]
|
||
},
|
||
"execution_count": 43,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"incorrect[0]"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.15"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|