langchain/tests/integration_tests/vectorstores/test_qdrant.py
Aivin V. Solatorio 6335cb5b3a
Add support for Qdrant nested filter (#4354)
# Add support for Qdrant nested filter

This extends the filter functionality for the Qdrant vectorstore. The
current filter implementation is limited to a single-level metadata
structure; however, Qdrant supports nested metadata filtering. This
extends the functionality for users to maximize the filter functionality
when using Qdrant as the vectorstore.

Reference: https://qdrant.tech/documentation/filtering/#nested-key

---------

Signed-off-by: Aivin V. Solatorio <avsolatorio@gmail.com>
2023-05-09 10:34:11 -07:00

179 lines
5.4 KiB
Python

"""Test Qdrant functionality."""
from typing import Callable, Optional
import pytest
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import Qdrant
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
@pytest.mark.parametrize(
["content_payload_key", "metadata_payload_key"],
[
(Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
("foo", "bar"),
(Qdrant.CONTENT_KEY, "bar"),
("foo", Qdrant.METADATA_KEY),
],
)
def test_qdrant(content_payload_key: str, metadata_payload_key: str) -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = Qdrant.from_texts(
texts,
FakeEmbeddings(),
location=":memory:",
content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_qdrant_add_documents() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch: Qdrant = Qdrant.from_texts(texts, FakeEmbeddings(), location=":memory:")
new_texts = ["foobar", "foobaz"]
docsearch.add_documents([Document(page_content=content) for content in new_texts])
output = docsearch.similarity_search("foobar", k=1)
# FakeEmbeddings return the same query embedding as the first document embedding
# computed in `embedding.embed_documents`. Since embed_documents is called twice,
# "foo" embedding is the same as "foobar" embedding
assert output == [Document(page_content="foobar")] or output == [
Document(page_content="foo")
]
@pytest.mark.parametrize(
["content_payload_key", "metadata_payload_key"],
[
(Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
("test_content", "test_payload"),
(Qdrant.CONTENT_KEY, "payload_test"),
("content_test", Qdrant.METADATA_KEY),
],
)
def test_qdrant_with_metadatas(
content_payload_key: str, metadata_payload_key: str
) -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Qdrant.from_texts(
texts,
FakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
def test_qdrant_similarity_search_filters() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [
{"page": i, "metadata": {"page": i + 1, "pages": [i + 2, -1]}}
for i in range(len(texts))
]
docsearch = Qdrant.from_texts(
texts,
FakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
)
output = docsearch.similarity_search(
"foo", k=1, filter={"page": 1, "metadata": {"page": 2, "pages": [3]}}
)
assert output == [
Document(
page_content="bar",
metadata={"page": 1, "metadata": {"page": 2, "pages": [3, -1]}},
)
]
@pytest.mark.parametrize(
["content_payload_key", "metadata_payload_key"],
[
(Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
("test_content", "test_payload"),
(Qdrant.CONTENT_KEY, "payload_test"),
("content_test", Qdrant.METADATA_KEY),
],
)
def test_qdrant_max_marginal_relevance_search(
content_payload_key: str, metadata_payload_key: str
) -> None:
"""Test end to end construction and MRR search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Qdrant.from_texts(
texts,
FakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key,
)
output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
]
@pytest.mark.parametrize(
["embeddings", "embedding_function"],
[
(FakeEmbeddings(), None),
(FakeEmbeddings().embed_query, None),
(None, FakeEmbeddings().embed_query),
],
)
def test_qdrant_embedding_interface(
embeddings: Optional[Embeddings], embedding_function: Optional[Callable]
) -> None:
from qdrant_client import QdrantClient
client = QdrantClient(":memory:")
collection_name = "test"
Qdrant(
client,
collection_name,
embeddings=embeddings,
embedding_function=embedding_function,
)
@pytest.mark.parametrize(
["embeddings", "embedding_function"],
[
(FakeEmbeddings(), FakeEmbeddings().embed_query),
(None, None),
],
)
def test_qdrant_embedding_interface_raises(
embeddings: Optional[Embeddings], embedding_function: Optional[Callable]
) -> None:
from qdrant_client import QdrantClient
client = QdrantClient(":memory:")
collection_name = "test"
with pytest.raises(ValueError):
Qdrant(
client,
collection_name,
embeddings=embeddings,
embedding_function=embedding_function,
)