langchain/tests/integration_tests/cache/test_gptcache.py
SimFG 7bcf238a1a
Optimize the initialization method of GPTCache (#4522)
Optimize the initialization method of GPTCache, so that users can use GPTCache more quickly.
2023-05-11 16:15:23 -07:00

63 lines
1.9 KiB
Python

import os
from typing import Any, Callable, Union
import pytest
import langchain
from langchain.cache import GPTCache
from langchain.schema import Generation
from tests.unit_tests.llms.fake_llm import FakeLLM
try:
from gptcache import Cache # noqa: F401
from gptcache.manager.factory import get_data_manager
from gptcache.processor.pre import get_prompt
gptcache_installed = True
except ImportError:
gptcache_installed = False
def init_gptcache_map(cache_obj: Cache) -> None:
i = getattr(init_gptcache_map, "_i", 0)
cache_path = f"data_map_{i}.txt"
if os.path.isfile(cache_path):
os.remove(cache_path)
cache_obj.init(
pre_embedding_func=get_prompt,
data_manager=get_data_manager(data_path=cache_path),
)
init_gptcache_map._i = i + 1 # type: ignore
def init_gptcache_map_with_llm(cache_obj: Cache, llm: str) -> None:
cache_path = f"data_map_{llm}.txt"
if os.path.isfile(cache_path):
os.remove(cache_path)
cache_obj.init(
pre_embedding_func=get_prompt,
data_manager=get_data_manager(data_path=cache_path),
)
@pytest.mark.skipif(not gptcache_installed, reason="gptcache not installed")
@pytest.mark.parametrize(
"init_func", [None, init_gptcache_map, init_gptcache_map_with_llm]
)
def test_gptcache_caching(
init_func: Union[Callable[[Any, str], None], Callable[[Any], None], None]
) -> None:
"""Test gptcache default caching behavior."""
langchain.llm_cache = GPTCache(init_func)
llm = FakeLLM()
params = llm.dict()
params["stop"] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
langchain.llm_cache.update("foo", llm_string, [Generation(text="fizz")])
_ = llm.generate(["foo", "bar", "foo"])
cache_output = langchain.llm_cache.lookup("foo", llm_string)
assert cache_output == [Generation(text="fizz")]
langchain.llm_cache.clear()
assert langchain.llm_cache.lookup("bar", llm_string) is None