mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
d126276693
# Improve the Chroma get() method by adding the optional "include" parameter. The Chroma get() method excludes embeddings by default. You can customize the response by specifying the "include" parameter to selectively retrieve the desired data from the collection. --------- Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
163 lines
5.7 KiB
Python
163 lines
5.7 KiB
Python
"""Test Chroma functionality."""
|
|
import pytest
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.vectorstores import Chroma
|
|
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
|
|
|
|
|
def test_chroma() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection", texts=texts, embedding=FakeEmbeddings()
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_chroma_async() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection", texts=texts, embedding=FakeEmbeddings()
|
|
)
|
|
output = await docsearch.asimilarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
|
|
def test_chroma_with_metadatas() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection",
|
|
texts=texts,
|
|
embedding=FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo", metadata={"page": "0"})]
|
|
|
|
|
|
def test_chroma_with_metadatas_with_scores() -> None:
|
|
"""Test end to end construction and scored search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection",
|
|
texts=texts,
|
|
embedding=FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
)
|
|
output = docsearch.similarity_search_with_score("foo", k=1)
|
|
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
|
|
|
|
|
def test_chroma_search_filter() -> None:
|
|
"""Test end to end construction and search with metadata filtering."""
|
|
texts = ["far", "bar", "baz"]
|
|
metadatas = [{"first_letter": "{}".format(text[0])} for text in texts]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection",
|
|
texts=texts,
|
|
embedding=FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
)
|
|
output = docsearch.similarity_search("far", k=1, filter={"first_letter": "f"})
|
|
assert output == [Document(page_content="far", metadata={"first_letter": "f"})]
|
|
output = docsearch.similarity_search("far", k=1, filter={"first_letter": "b"})
|
|
assert output == [Document(page_content="bar", metadata={"first_letter": "b"})]
|
|
|
|
|
|
def test_chroma_search_filter_with_scores() -> None:
|
|
"""Test end to end construction and scored search with metadata filtering."""
|
|
texts = ["far", "bar", "baz"]
|
|
metadatas = [{"first_letter": "{}".format(text[0])} for text in texts]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection",
|
|
texts=texts,
|
|
embedding=FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
)
|
|
output = docsearch.similarity_search_with_score(
|
|
"far", k=1, filter={"first_letter": "f"}
|
|
)
|
|
assert output == [
|
|
(Document(page_content="far", metadata={"first_letter": "f"}), 0.0)
|
|
]
|
|
output = docsearch.similarity_search_with_score(
|
|
"far", k=1, filter={"first_letter": "b"}
|
|
)
|
|
assert output == [
|
|
(Document(page_content="bar", metadata={"first_letter": "b"}), 1.0)
|
|
]
|
|
|
|
|
|
def test_chroma_with_persistence() -> None:
|
|
"""Test end to end construction and search, with persistence."""
|
|
chroma_persist_dir = "./tests/persist_dir"
|
|
collection_name = "test_collection"
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name=collection_name,
|
|
texts=texts,
|
|
embedding=FakeEmbeddings(),
|
|
persist_directory=chroma_persist_dir,
|
|
)
|
|
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
docsearch.persist()
|
|
|
|
# Get a new VectorStore from the persisted directory
|
|
docsearch = Chroma(
|
|
collection_name=collection_name,
|
|
embedding_function=FakeEmbeddings(),
|
|
persist_directory=chroma_persist_dir,
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
|
|
# Clean up
|
|
docsearch.delete_collection()
|
|
|
|
# Persist doesn't need to be called again
|
|
# Data will be automatically persisted on object deletion
|
|
# Or on program exit
|
|
|
|
|
|
def test_chroma_mmr() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection", texts=texts, embedding=FakeEmbeddings()
|
|
)
|
|
output = docsearch.max_marginal_relevance_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
|
|
def test_chroma_mmr_by_vector() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
embeddings = FakeEmbeddings()
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection", texts=texts, embedding=embeddings
|
|
)
|
|
embedded_query = embeddings.embed_query("foo")
|
|
output = docsearch.max_marginal_relevance_search_by_vector(embedded_query, k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
|
|
def test_chroma_with_include_parameter() -> None:
|
|
"""Test end to end construction and include parameter."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection", texts=texts, embedding=FakeEmbeddings()
|
|
)
|
|
output = docsearch.get(include=["embeddings"])
|
|
assert output["embeddings"] is not None
|
|
output = docsearch.get()
|
|
assert output["embeddings"] is None
|