mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
87e502c6bc
Co-authored-by: jacoblee93 <jacoblee93@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
169 lines
4.1 KiB
Plaintext
169 lines
4.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "25c90e9e",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Loading from LangChainHub\n",
|
|
"\n",
|
|
"This notebook covers how to load chains from [LangChainHub](https://github.com/hwchase17/langchain-hub)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "8b54479e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.chains import load_chain\n",
|
|
"\n",
|
|
"chain = load_chain(\"lc://chains/llm-math/chain.json\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "4828f31f",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
|
|
"whats 2 raised to .12\u001b[32;1m\u001b[1;3m\n",
|
|
"Answer: 1.0791812460476249\u001b[0m\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Answer: 1.0791812460476249'"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"chain.run(\"whats 2 raised to .12\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8db72cda",
|
|
"metadata": {},
|
|
"source": [
|
|
"Sometimes chains will require extra arguments that were not serialized with the chain. For example, a chain that does question answering over a vector database will require a vector database."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "aab39528",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
|
"from langchain.vectorstores import Chroma\n",
|
|
"from langchain.text_splitter import CharacterTextSplitter\n",
|
|
"from langchain import OpenAI, VectorDBQA"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "16a85d5e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Running Chroma using direct local API.\n",
|
|
"Using DuckDB in-memory for database. Data will be transient.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain.document_loaders import TextLoader\n",
|
|
"\n",
|
|
"loader = TextLoader(\"../../state_of_the_union.txt\")\n",
|
|
"documents = loader.load()\n",
|
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
|
"texts = text_splitter.split_documents(documents)\n",
|
|
"\n",
|
|
"embeddings = OpenAIEmbeddings()\n",
|
|
"vectorstore = Chroma.from_documents(texts, embeddings)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "6a82e91e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"chain = load_chain(\"lc://chains/vector-db-qa/stuff/chain.json\", vectorstore=vectorstore)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "efe9b25b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"\" The president said that Ketanji Brown Jackson is a Circuit Court of Appeals Judge, one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans, and will continue Justice Breyer's legacy of excellence.\""
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
|
"chain.run(query)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f910a32f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|